题目


分析

此题肯定不是绿题,哪有这么恶心的dp

试想这样的情形:假设当 JYY 第一次抵达村庄 \(i\),未作救治并直接前往了另一个村庄。那么由于 \(i\) 村庄的人们求生心切,

一旦当 JYY 朝向靠近 \(i\) 村庄的方向前行时,\(i\) 村庄的村民就会以为 JYY 是来救他们了,而产生巨大的期望。

之后倘若 JYY 再次掉头朝着远离 \(i\) 村庄的方向行进,那么 \(i\) 村庄的村民就会因为巨大的失落而产生绝望的情绪。

所以JYY应该是一段一段治愈的,设\(dp[i]\)表示JYY治愈完前\(i\)个村庄的最少不幸人数

\(dp[i]=\min\{dp[j]+???(calc(j+1,i))+(s[n]-s[i])*(???)\}\),这样\(O(n^2)\)的dp明显还不够,需要预处理一些东西,

首先这一段应该是从\(j+1\)到\(i\)再到\(j+1\)再到\(i\),先考虑后面的天数就是\(4*(i-j-1)+1+1\),

也就是往返三遍再治愈当中所有村民总计4遍(治愈要加1),还要加上从\(j\)到\(j+1\)的天数

考虑中间\(calc\)的部分,\(calc(j,i)\)可以选择治愈\(j\)先(\(j+1\sim i\)都拖延1天)或者先治愈\(j+1\sim i\)再回来治愈\(j\),

那也就是

\[calc(j,i)=calc(j+1,i)+s[i]-s[j]+\min\{3*(i-j)*a[j],s[i]-s[j]\}
\]

正序枚举\(i\)倒序枚举\(j\)就可以做到\(O(n^2)\)

综上所述

\[dp[i]=\min\{dp[j]+calc(j+1,i)+(s[n]-s[i])*(4*(i-j-1)+2)\}
\]

代码

#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int N=3011; typedef long long lll;
lll a[N],s[N],dp[N],f[N][N],n;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline lll calc(int l,int r){return s[r]-s[l-1];}
inline lll min(lll a,lll b){return a<b?a:b;}
signed main(){
n=iut(),memset(dp,42,sizeof(dp)),dp[0]=0;
for (rr int i=1;i<=n;++i)
s[i]=s[i-1]+(a[i]=iut());
for (rr int i=1;i<=n;++i){
f[i][i]=0;
for (rr int j=i-1;j;--j)
f[j][i]=f[j+1][i]+calc(j+1,i)+min(3*(i-j)*a[j],calc(j+1,i));
}
for (rr int i=1;i<=n;++i)
for (rr int j=0;j<i;++j)
dp[i]=min(dp[i],dp[j]+f[j+1][i]+((i-j-1)<<2|2)*calc(i+1,n));
return !printf("%lld",dp[n]);
}

#dp#洛谷 5774 [JSOI2016]病毒感染的更多相关文章

  1. Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)

    题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...

  2. 树形DP 洛谷P2014 选课

    洛谷P2014 选课 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门 ...

  3. 洛谷$P4322\ [JSOI2016]$最佳团体 二分+$dp$

    正解:二分+$dp$ 解题报告: 传送门$QwQ$ 这题长得好套路嗷,,,就一看就看出来是个$01$分数规划+树形$dp$嘛$QwQ$. 考虑现在二分的值为$mid$,若$mid\leq as$,则有 ...

  4. 区间DP 洛谷P2858牛奶零食

    题目链接 题意:你有n个货物从1-n依次排列,每天可以从两侧选一个出来卖,卖的价格是当天的天数乘该货物的初始价格,问这批货物卖完的最大价格 输入:第一行n,之后是n个货物的初始价值 这道题不能用贪心做 ...

  5. P1279 字串距离 dp 洛谷

    题目描述 设有字符串X,我们称在X的头尾及中间插入任意多个空格后构成的新字符串为X的扩展串,如字符串X为”abcbcd”,则字符串“abcb□cd”,“□a□bcbcd□”和“abcb□cd□”都是X ...

  6. dp 洛谷P1977 出租车拼车 线性dp

    题目背景 话说小 x 有一次去参加比赛,虽然学校离比赛地点不太远,但小 x 还是想坐 出租车去.大学城的出租车总是比较另类,有“拼车”一说,也就是说,你一个人 坐车去,还是一堆人一起,总共需要支付的钱 ...

  7. 经典DP 洛谷p1880 石子合并

    https://www.luogu.org/problemnew/show/P1880 题目 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新 ...

  8. [DP]洛谷P1115最大子段和

    题目来源 https://www.luogu.org/problemnew/show/P1115 题目描述 给出一段序列,选出其中连续且非空的一段使得这段和最大. 输入输出格式 输入格式: 第一行是一 ...

  9. 尼克的任务 dp 洛谷1280

    蒟蒻表示老久没看过dp题目了,,挺水的一道dp题目都没想出来,,, 首先设dp[i]表示从开始到i时间的最大空闲时间,用vector to[x] 表示从x点开始的任务结束时间,cnt[x]表示从x开始 ...

  10. dp——洛谷 P1541 乌龟棋 —— by hyl天梦

    题目:(转自 https://www.luogu.com.cn/problem/P1541) 题目描述 乌龟棋的棋盘是一行NN个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第NN格是 ...

随机推荐

  1. 本地启动RocketMQ未映射主机名产生的超时问题

    问题描述 参考RocketMQ官方文档在本地启动一个验证环境的时候遇到超时报错问题. 本地环境OS:CentOS Linux release 8.5.2111 首先,进入到RocketMQ安装目录,如 ...

  2. SpringCloud组件:Feign之日志输出

    目录 Feign之日志输出 Feign日志输出说明 前期准备 构建项目 tairan-spring-cloud-feign-logger配置 源码位置 Feign之日志输出 在我们日常开发过程中,经常 ...

  3. 【Azure 事件中心】如何查看Event Hub的生产者或者是消费者端的IP地址呢?

    问题描述 哪些客户端 IP 正在向/从Azure Event Hub发送/接收事件?如何来查看Event Hub的生产者端,消费者端的IP地址呢? 问题解答 如果需要查看Event Hub 服务端的日 ...

  4. 基于 Nebula Graph 构建图学习能力

    本文首发于 Nebula Graph Community 公众号 经常看技术文章的小伙伴可能会留意到除了正在阅读的那篇文章,在文章页面的正文下方或者右侧区域会有若干同主题.同作者的文章等你阅读:经常逛 ...

  5. kotlin协程异常处理之-CoroutineExceptionHandler

    转载请标明出处:https://www.cnblogs.com/tangZH/p/17307406.html kotlin协程小记 协程的async使用 kotlin协程异常处理之-try catch ...

  6. 什么是Redis持久化?

    Redis持久化指的是将内存中的数据同步到硬盘文件,并在redis重新启动的时候将数据备份到硬盘上,从而保证数据的安全性.通过持久化, Redis可以在系统关闭时将数据保存到硬盘上,避免了数据丢失的风 ...

  7. redis分片sharding实现原理

    为什么集群? 通常,为了提高网站响应速度,总是把热点数据保存在内存中而不是直接从后端数据库中读取.Redis是一个很好的Cache工具.大型网站应用,热点数据量往往巨大,几十G上百G是很正常的事儿,在 ...

  8. 10、zookeeper客户端curator

    curator介绍 https://blog.csdn.net/wo541075754/article/details/68067872 关于第三方客户端的小介绍 zkClient有对dubbo的一些 ...

  9. window.open代理劫持

    window.open = new Proxy(window.open, { apply(target, ctx, args) { if (hasAuth(args[0])) { return tar ...

  10. pollute 污染 pol=por=pro 向前 lut=释放 结合ps软件里面lut概念记忆

    pollute 污染 pol = por = pro = 向前 lut = 释放 (ps里面有lut的概念) e 动词 向前释放 -> 污染 弄脏 简单记忆 poll / ute poll - ...