Problem Statement

You are given two strings \(S\) and \(T\) consisting of lowercase English letters.

Takahashi starts with the string \(S\). He can perform K kinds of operations any number of times in any order.

The i-th operation is the following:

Pay a cost of \(1\). Then, if the current string contains the character \(C_i\), choose one of its occurrences and replace it with the string \(A_i\) . Otherwise, do nothing.

Find the minimum total cost needed to make the string equal \(T\). If it is impossible to do so, print −1.

Constraints

  • \(1≤∣S∣≤∣T∣≤50\)
  • \(1≤K≤50\)
  • \(C\) is a,b...z
  • \(1\le |A_i|\le 50\)
  • \(S\), \(T\), and \(A_i\)are strings consisting of lowercase English letters.
  • \(C_i\ne A_i\), regarding \(C_i\) as a string of length 1.
  • All pairs \((C_i,A_i)\) are distinct.

Input

Input is given from Standard Input in the following format:

\(S\)

\(T\)

\(K\)

\(C_1\) \(A_1\)

\(C_2\) \(A_2\)

.

.

.

\(C_k\) \(A_k\)

Output

Print the minimum total cost needed to make the string equal \(T\). If it is impossible to do so, print −1.

Sample Input 1

ab
cbca
3
a b
b ca
a efg

Sample Output 1

4

Starting with S=ab, Takahashi can make T=cbca in four operations as follows:

  • Replace the 1-st character a in ab with b (Operation of the 1-st kind). The string is now bb.
  • Replace the 2-nd character b in bb with ca (Operation of the 2-nd kind). The string is now bca.
  • Replace the 1-st character b in bca with ca (Operation of the 2-nd kind). The string is now caca.
  • Replace the 2-nd character a in caca with b (Operation of the 1-st kind). The string is now cbca.

Each operation incurs a cost of 1, for a total of 4, which is the minimum possible.

Sample Input 2

a
aaaaa
2
a aa
a aaa

Sample Output 2

2

Two operationsaaaaaaaaa incur a cost of 2, which is the minimum possible.

Sample Input 3

a
z
1
a abc

Sample Output 3

-1

No sequence of operations makes \(T\)=z from \(S\)=a.

妙到极致的区间 dp。

发现字符变为字符串不好做,所以我们反过来,字符串变为字符。同时发现变换方式有区间的痕迹,考虑区间 dp。

区间 dp 使用需要让区间变小。所以当 \(|A_i|=1\) 时,要特判。可以跑 Floyd。注意不要打错(打错 Floyd 调了好久

定义 \(dp_{l,r,c}\) 为 \(t[l,r]\) 变换成字符 \(c\) 的最小代价。这个区间 dp 难在转移。枚举使用哪一种变换方式。设使用第 \(i\) 种变换,那么 \(t[l,r]\) 变为 \(c_i\) 的代价为 \(t[l,r]\) 变为 \(A_i\) 的代价加 1。算完后我们把 Floyd 的结果跑一遍。算答案时我们也是计算 \(t[1,n]\) 变为 s 的代价。

所以我们唯一不会算的就是 \(t\) 的一个子串串变为另一个字符串的代价。设这个子串为 \(t[l,r]\),

考虑做另一个 dp 方程。设 \(g_{i,j}\) 为把 \(t_l\) 至 \(t_j\) 变为\(A_{i,1}\) 至 \(A_{i,k}\) 最小代价。转移时枚举最后一次变换的开头 \(k1\),那么\(g_{j,k}=\min \limits_{k1=l-1}^rg_{k1,k-1}+dp_{k1+1,j,A_{i,k}}\)

代码还挺绕的,建议写注释。同时要一步步理解。

#include<bits/stdc++.h>
using namespace std;
const int N=55;
char s[N],t[N],c[N],str[N][N];
int dis[27][27],dp[N][N][27],p,g[N][N],d[N],n,m,r;
int main()
{
memset(dis,0x3f,sizeof(dis));
memset(dp,0x3f,sizeof(dp));
scanf("%s%s%d",s+1,t+1,&p);
n=strlen(t+1),m=strlen(s+1);
for(int i=1;i<=p;i++)
{
scanf(" %c%s",&c[i],str[i]+1);
d[i]=strlen(str[i]+1);
if(d[i]==1)
dis[str[i][1]-'a'][c[i]-'a']=1;
// printf("%d\n",d[i]);
}
for(int i=1;i<=n;i++)
dp[i][i][t[i]-'a']=0;
for(int k=0;k<27;k++)
for(int i=0;i<27;i++)
for(int j=0;j<27;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
for(int len=1;len<=n;len++)
{
for(int l=1;l+len-1<=n;l++)//从t[l]至t[r]变到c的最小代价
{
r=l+len-1;
for(int i=1;i<=p;i++)//考虑第i次操作
{
if(d[i]>len)
continue;
memset(g,0x3f,sizeof(g));
g[l-1][0]=0;
for(int k=1;k<=d[i];k++)
{
for(int j=l-1;j<=r;j++)//把t[l]至t[j]变为str[i][1]至str[i][k]最小代价
{
for(int k1=l-1;k1<j;k1++)//已经把t[l]...t[k1]变成str[i][1]...str[i][k-1]
g[j][k]=min(g[j][k],g[k1][k-1]+dp[k1+1][j][str[i][k]-'a']);
}
}
// if(l==3&&r==4)
// printf("%d\n",g[3][1]);
dp[l][r][c[i]-'a']=min(dp[l][r][c[i]-'a'],g[r][d[i]]+1);
}
for(int i=0;i<27;i++)
for(int j=0;j<27;j++)
dp[l][r][i]=min(dp[l][r][i],dp[l][r][j]+dis[j][i]);
}
}
// printf("%d\n",dp[2][2][0]);
// printf("%d\n",dp[2][2][1]+dis[1][0]);
memset(g,0x3f,sizeof(g));
g[0][0]=0;
for(int k=1;k<=m;k++)
{
for(int j=0;j<=n;j++)//把t[l]至t[j]变为str[i][1]至str[i][k]最小代价
{
for(int k1=0;k1<j;k1++)//已经把t[l]...t[k1]变成str[i][1]...str[i][k-1]
g[j][k]=min(g[j][k],g[k1][k-1]+dp[k1+1][j][s[k]-'a']);
}
}
if(g[n][m]>1e9)
printf("-1\n");
else
printf("%d",g[n][m]);
return 0;
}

[ABC261G] Replace的更多相关文章

  1. <JavaScript语言精粹>--<读书笔记三>之replace()与正则

    今天有人问我repalce(),他那个题目很有意思.我也不会做,于是我就去查,结果发现就是最基础的知识的延伸. 所以啊最基础的知识才是很重要的,千万不能忽略,抓起JS就写代码完全不知到所以然,只知道写 ...

  2. StackOverFlow排错翻译 - Python字符串替换: How do I replace everything between two strings without replacing the strings?

    StackOverFlow排错翻译 - Python字符串替换: How do I replace everything between two strings without replacing t ...

  3. js的replace函数入参为function时的疑问

    近期在写js导出excel文件时运用到replace方法,此处详细的记录下它各个参数所代表的的意义. 定义和用法 replace() 方法用于在字符串中用一些字符替换另一些字符,或替换一个与正则表达式 ...

  4. ORACLE 利用 REPLACE函数替换字段字符串

    REPLACE(string,s1,s2) string 希望被替换的字符或变量 s1 被替换的字符串 s2 要替换的字符串 SQL> select replace(he love you,he ...

  5. js 页面刷新location.reload和location.replace的区别小结

    reload 方法,该方法强迫浏览器刷新当前页面. 语法: location.reload([bForceGet]) 参数: bForceGet, 可选参数, 默认为 false,从客户端缓存里取当前 ...

  6. replace和translate的用法

    select replace ('111222333444','222','888') from dual;with tmp as(select 'aabb/123\:cde工人' s from du ...

  7. JavaScript replace() 方法

    参考:http://www.w3school.com.cn/jsref/jsref_replace.asp 需要有一点注意的是:可以是函数的形式做为返回值,如下: "test{0}" ...

  8. replace实现正则过滤替换非法字符

    html+js结构如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http: ...

  9. Replace 删除、替换函数精解示例

    '************************************************************************* '**模 块 名:Replace函数精解示例 '* ...

  10. angularjs 指令详解 - template, restrict, replace

    通过指令机制,angularjs 提供了一个强大的扩展系统,我们可以通过自定义指令来扩展自己的指令系统. 怎样定义自己的指令呢? 我们通过 Bootstrap UI来学习吧.这个项目使用 angula ...

随机推荐

  1. 《SQL与数据库基础》08. 多表查询

    目录 多表查询 多表关系 一对多 多对多 一对一 多表查询概述 分类 内连接 外连接 自连接 联合查询 子查询 分类 标量子查询 列子查询 行子查询 表子查询 案例 本文以 MySQL 为例 多表查询 ...

  2. 《SQL与数据库基础》05. SQL-DCL

    目录 DCL 用户管理 权限控制 本文以 MySQL 为例 DCL 用户管理 查询有哪些用户: 1. USE mysql; SELECT * FROM user; 2. SELECT * FROM m ...

  3. msvc++中的预编译头文件pch.hpp和stdafx.h

    预编译头文件 在 Visual Studio 中创建新项目时,会在项目中添加一个名为 pch.h 的"预编译标头文件". (在 Visual Studio 2017 及更高版本中, ...

  4. Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.so

    在安装Docker以后,执行命令出现错误. Got permission denied while trying to connect to the Docker daemon socket at u ...

  5. Python从0到1丨详解图像锐化的Sobel、Laplacian算子

    本文分享自华为云社区<[Python从零到壹] 五十八.图像增强及运算篇之图像锐化Sobel.Laplacian算子实现边缘检测>,作者: eastmount . 一.Sobel算子 So ...

  6. 堆的原理以及实现O(lgn)

    大家好,我是蓝胖子,我一直相信编程是一门实践性的技术,其中算法也不例外,初学者可能往往对它可望而不可及,觉得很难,学了又忘,忘其实是由于没有真正搞懂算法的应用场景,所以我准备出一个系列,囊括我们在日常 ...

  7. Go 语言开发环境搭建

    Go 语言开发环境搭建 目录 Go 语言开发环境搭建 一. GO 环境安装 1.1 下载 1.2 Go 版本的选择 1.3 安装 1.3.1 Windows安装 1.3.2 Linux下安装 1.3. ...

  8. xgo多线程

    import threading import time #导入xgoedu from xgoedu import XGOEDU from xgolib import XGO #导入xgolib  # ...

  9. maven error

    1 [INFO] Assembling webapp [crm9] in [/home/wukongcrm/72crm-java/target/ROOT] 2 [INFO] Processing wa ...

  10. K8S太庞大,这款PasteSpider绝对适合你!一款轻量级容器部署管理工具

    PasteSpider采用.netcore编写,运行于linux服务器的docker/podman里面,涉及的技术或者工具有podman/docker,registry,nginx,top,ssh,g ...