阿里DataX极简教程
简介
DataX是一个数据同步工具,可以将数据从一个地方读取出来并以极快的速度写入另外一个地方。常见的如将mysql中的数据同步到另外一个mysql中,或者另外一个mongodb中。
工作流程
- read:设置一个源,DataX从源读取数据
- write:设置一个目的地,DataX将读取到的数据写入目的地
- setting:同步设置,如设置并发通道、控制作业速度等
- Framework:Framework用于连接reader和writer,作为两者的数据传输通道,并处理缓冲,流控,并发,数据转换等核心技术问题
- 多线程:充分利用多线程来处理同步任务
核心架构

核心模块介绍
1:DataX完成单个数据同步的作业,我们称之为Job,DataX接受到一个Job之后,将启动一个进程来完成整个作业同步过程。DataX Job模块是单个作业的中枢管理节点,承担了数据清理、子任务切分(将单一作业计算转化为多个子Task)、TaskGroup管理等功能。
2:DataXJob启动后,会根据不同的源端切分策略,将Job切分成多个小的Task(子任务),以便于并发执行。Task便是DataX作业的最小单元,每一个Task都会负责一部分数据的同步工作。
3:切分多个Task之后,DataX Job会调用Scheduler模块,根据配置的并发数据量,将拆分成的Task重新组合,组装成TaskGroup(任务组)。每一个TaskGroup负责以一定的并发运行完毕分配好的所有Task,默认单个任务组的并发数量为5
4:每一个Task都由TaskGroup负责启动,Task启动后,会固定启动Reader—>Channel—>Writer的线程来完成任务同步工作
5:DataX作业运行起来之后, Job监控并等待多个TaskGroup模块任务完成,等待所有TaskGroup任务完成后Job成功退出。否则,异常退出,进程退出值非0
DataX调度流程
举例来说,用户提交了一个DataX作业,并且配置了20个并发,目的是将一个100张分表的mysql数据同步到odps里面。 DataX的调度决策思路是:
DaXJob根据分库分表切分成了100个Task。
根据20个并发,DataX计算共需要分配4个TaskGroup。
4个TaskGroup平分切分好的100个Task,每一个TaskGroup负责以5个并发共计运行25个Task。
支持的数据
| 类型 | 数据源 | Reader(读) | Writer(写) | 文档 |
|---|---|---|---|---|
| RDBMS 关系型数据库 | MySQL | √ | √ | 读 、写 |
| Oracle | √ | √ | 读 、写 | |
| OceanBase | √ | √ | 读 、写 | |
| SQLServer | √ | √ | 读 、写 | |
| PostgreSQL | √ | √ | 读 、写 | |
| DRDS | √ | √ | 读 、写 | |
| 达梦 | √ | √ | 读 、写 | |
| 通用RDBMS(支持所有关系型数据库) | √ | √ | 读 、写 | |
| 阿里云数仓数据存储 | ODPS | √ | √ | 读 、写 |
| ADS | √ | 写 | ||
| OSS | √ | √ | 读 、写 | |
| OCS | √ | √ | 读 、写 | |
| NoSQL数据存储 | OTS | √ | √ | 读 、写 |
| Hbase0.94 | √ | √ | 读 、写 | |
| Hbase1.1 | √ | √ | 读 、写 | |
| MongoDB | √ | √ | 读 、写 | |
| Hive | √ | √ | 读 、写 | |
| 无结构化数据存储 | TxtFile | √ | √ | 读 、写 |
| FTP | √ | √ | 读 、写 | |
| HDFS | √ | √ | 读 、写 | |
| Elasticsearch | √ | 写 |
实践
作为极简教程,本文将从mysql中读取一张表的数据,然后同步到clickhouse中。
下载
打开该项目的Github 首页进行下载:https://github.com/alibaba/DataX
下载链接:https://datax-opensource.oss-cn-hangzhou.aliyuncs.com/202308/datax.tar.gz
下载下来是一个tar.gz的包,windows下解压命令:
tar -zxvf xxx.tar.gz
程序目录:
- bin:使用里面的 datax.py 来启动程序
- job:里面放了一个job.json,用来检查运行环境,一般的建议下载完毕之后执行一次。
- log:存放执行日志
- plugin:插件集,插件分为read和write,分别对应datax可支持的数据库
- 其他目录:......
环境
DataX是基于python和java的,需要机器拥有python和java 的运行环境。
在下载完毕后,通过执行自检脚本,可确认环境是否正确
python {YOUR_DATAX_HOME}/bin/datax.py {YOUR_DATAX_HOME}/job/job.json
执行流程
编写同步任务配置文件,在job目录中创建 mysql-to-clickhouse.json 文件,并填入如下内容
{
"job": {
"setting": {
"speed": {
"channel": 3
},
"errorLimit": {
"record": 0,
"percentage": 0.02
}
},
"content": [
{
"reader": {
"name": "mysqlreader",
"parameter": {
"username": "xxx",
"password": "xxx",
"column": [
"id",
"name"
],
"splitPk": "id",
"connection": [
{
"table": [
"table_name"
],
"jdbcUrl": [
"jdbc:mysql://192.168.1.xxx:xxx/db_name"
]
}
]
}
},
"writer": {
"name": "clickhousewriter",
"parameter": {
"username": "xxx",
"password": "xxx",
"column": [
"id",
"ame"
],
"connection": [
{
"jdbcUrl": "jdbc:clickhouse://192.168.1.xxx:xxx/table_name",
"table": [
"table_name"
]
}
],
"preSql": [],
"postSql": [],
"batchSize": 65536,
"batchByteSize": 134217728,
"dryRun": false,
"writeMode": "insert"
}
}
}
]
}
}
- job:一个job包含两个部分,setting中设置任务的执行速度,错误限制等,content中是任务具体的描述。
- reader:任务的数据输入源
- writer:任务的数据输出源
根据任务配置文件启动datax,先cd到datax的根目录
python bin/datax.py job/mysql-to-clickhouse.json
运行上述命令后,任务就开启了。本例从mysql数据库中的一张表中读取了两个字段(id,name),然后同步到clickhouse中,clickhouse中需要先创建同样的库,表和列。
任务执行非常快,140W数据仅用了 18s 就完成了同步。
2024-05-16 16:24:57.312 [job-0] INFO JobContainer -
任务启动时刻 : 2024-05-16 16:24:38
任务结束时刻 : 2024-05-16 16:24:57
任务总计耗时 : 18s
任务平均流量 : 2.21MB/s
记录写入速度 : 142425rec/s
读出记录总数 : 1424252
读写失败总数 : 0
引用
- readme:https://github.com/alibaba/DataX
- introduction:https://github.com/alibaba/DataX/blob/master/introduction.md
阿里DataX极简教程的更多相关文章
- Typora极简教程
Typora极简教程 ” Markdown 是一种轻量级标记语言,创始人是约翰·格鲁伯(John Gruber).它允许人们 “使用易读易写的纯文本格式编写文档,然后转换成有效的 HTML 文档.” ...
- CentOS安装使用.netcore极简教程(免费提供学习服务器)
本文目标是指引从未使用过Linux的.Neter,如何在CentOS7上安装.Net Core环境,以及部署.Net Core应用. 仅针对CentOS,其它Linux系统类似,命令环节稍加调整: 需 ...
- Asky极简教程:零基础1小时学编程,已更新前8节
Asky极简架构 开源Asky极简架构.超轻量级.高并发.水平扩展.微服务架构 <Asky极简教程:零基础1小时学编程>开源教程 零基础入门,从零开始全程演示,如何开发一个大型互联网系统, ...
- Python 极简教程(八)字符串 str
由于字符串过于重要,请认真看完并保证所有代码都至少敲过一遍. 对于字符串,前面在数据类型中已经提到过.但是由于字符串类型太过于常用,Python 中提供了非常多的关于字符串的操作.而我们在实际编码过程 ...
- Nginx 极简教程(快速入门)
作者:dunwu github.com/dunwu/nginx-tutorial 推荐阅读(点击即可跳转阅读) 1. SpringBoot内容聚合 2. 面试题内容聚合 3. 设计模式内容聚合 4. ...
- 【转】Typora极简教程
Typora极简教程 Typora download ” Markdown 是一种轻量级标记语言,创始人是约翰·格鲁伯(John Gruber).它允许人们 “使用易读易写的纯文本格式编写文档,然后转 ...
- nginx极简教程
Nginx 极简教程 本项目是一个 Nginx 极简教程,目的在于帮助新手快速入门 Nginx. examples 目录中的示例模拟了工作中的一些常用实战场景,并且都可以通过脚本一键式启动,让您可以快 ...
- NodeJS 极简教程 <1> NodeJS 特点 & 使用场景
NodeJS 极简教程 <1> NodeJS 特点 & 使用场景 田浩 因为看开了所以才去较劲儿. 1. NodeJS是什么 1.1 Node.js is a JavaScri ...
- 自制 os 极简教程1:写一个操作系统有多难
为什么叫极简教程呢?听我慢慢说 不知道正在阅读本文的你,是否是因为想自己动手写一个操作系统.我觉得可能每个程序员都有个操作系统梦,或许是想亲自动手写出来一个,或许是想彻底吃透操作系统的知识.不论是为了 ...
- python极简教程04:进程和线程
测试奇谭,BUG不见. 大家好,我是谭叔. 这一场,主讲python的进程和线程. 目的:掌握初学必须的进程和线程知识. 进程和线程的区别和联系 终于开始加深难度,来到进程和线程的知识点~ 单就这两个 ...
随机推荐
- ubuntu环境下因pie选项导致双击启动失败的问题
在ubuntu环境下,链接可执行文件时增加-pie选项,双击可执行程序,无法正常启动. 对于这个现象,stackoverflow有个帖子,gcc creates mime type applicati ...
- 可能有人听过ThreadLocal,但一定没人听过ThreadLocal对象池
目录 简介 ThreadLocal ThreadLocalMap Recycler 总结 简介 JDK中的Thread大家肯定用过,只要是用过异步编程的同学肯定都熟悉.为了保存Thread中特有的变量 ...
- 大咖齐聚!OpenHarmony技术峰会豪华嘉宾阵容揭晓
第一届开放原子开源基金会OpenHarmony技术峰会即将来袭 重量级嘉宾和行业大咖高能集结 展示OpenHarmony操作系统技术革新 1场主论坛.6场分论坛干货拉满 2月25日,一起解锁更多精 ...
- C++判断操作系统位数
//判断当前系统是否为64位 BOOL Is64BitSystem() { #ifdef _WIN64 return true; #elif _WIN32 HMODULE hModule = Load ...
- cas登录成功后跳转地址和退出后跳转首页
cas登录成功后跳转地址和退出后跳转首页 CAS版本5.3 1.登录页面 的登录链接地址为 login.html ...<span v-if="username == ''" ...
- Kryo反序列化链分析
前言 Kryo是一个快速序列化/反序列化工具,依赖于字节码生成机制(底层使用了ASM库),因此在序列化速度上有一定的优势,但正因如此,其使用也只能限制在基于JVM的语言上. Kryo序列化出的结果,是 ...
- BizWorks助力企业应用的高效开发与复用
简介: BizWorks作为企业级云原生应用数字工作台,能很好地支撑企业数字中台建设.云原生应用开发.企业资产运营管理等场景.本文不会全面介绍BizWorks平台的能力,而是着重介绍BizWorks在 ...
- 阿里云 ACK 容器服务生产级可观测体系建设实践
简介: 随着容器被越来越对企业接纳与落地,可观测成为重点.那么,让我们深入了解阿里云 ACK 容器服务生产级可观测体系建设实践,为自身业务可观测提供参考- 作者:冯诗淳(行疾) ACK 可观测体系 ...
- 使用AnalyticDB轻松实现以图搜图和人脸检索
1. 背景 以图搜图在生活中有着广泛的应用, 当我们在电视上看到有人穿着一件美丽的裙子或者帅气的球鞋也想拥有时, 我们可以拍张照片然后打开淘宝然后上传照片就可以快速的找到这个商品. 我们看到一张电影截 ...
- 入选 SIGMOD2021 的时间序列多周期检测通用框架 RobustPeriod 如何支撑阿里业务场景?
简介: 本文除了介绍RobustPeriod的核心技术亮点,还将重点解释如何将它构筑成服务来解决阿里云的业务痛点. 近日,由阿里云计算平台和阿里云达摩院合作的时序多周期检测相关论文RobustPeri ...