在机器学习的生产环境中,我们经常需要将多个模型的预测结果进行融合,以便提高预测的准确性。这个过程通常涉及到多个模型子分的简单逻辑回归融合。虽然离线训练时我们可以直接使用sklearn的逻辑回归进行训练和调参,但在生产环境中,模型的上线往往需要使用PMML(Predictive Model Markup Language)格式。PMML不仅能够在一个文件中完成多个模型的融合,还可以输出融合后的Sigmoid打分,极大地方便了生产环境中的模型管理和使用。

使用PMML的Segmentation功能进行模型融合

通过阅读PMML文档,我们发现可以利用其Segmentation功能来实现模型的融合。在PMML文件的最外层使用Segmentation并指定multipleModelMethod为"SelectAll",这样就可以在最终输出中包含所有内层Segment的输出。这一功能为模型融合提供了便利。

处理单模型分数缺失问题

在实际应用中,我们可能会遇到单个模型分数缺失或等于某个固定常数(例如-999,代表缺失)的情况。这时,我们希望将其视为融合失败,即不进行融合处理,直接返回一个特定的融合失败值(如-999)。为了实现这一逻辑,我们可以使用Segmentation来包裹整个回归过程,设置multipleModelMethodselectFirst。这样,当内部的第一个Segment检测到某个模型子分等于-999时,就会选择这条路径,并最终输出-999作为融合失败的标志。

<Segmentation multipleModelMethod="selectFirst">
<Segment id="model1SegmentInvalidInput">
<CompoundPredicate booleanOperator="or">
<SimplePredicate field="field1" operator="equal" value="-999"/>
<SimplePredicate field="field2" operator="equal" value="-999"/>
</CompoundPredicate>
<RegressionModel modelName="InvalidInputModelmodel1" functionName="regression" targetFieldName="result">
<MiningSchema>
<MiningField name="field1" usageType="active"/>
<MiningField name="field2" usageType="active"/>
<MiningField name="result" usageType="predicted"/>
</MiningSchema>
<RegressionTable intercept="-999"/>
</RegressionModel>
</Segment>
...
</Segmentation>

将最终分数转换为概率值

为了将回归后的预测值通过Sigmoid函数转换为概率值,从而和线上使用的分数保持一致的量纲,我们可以在有效的回归Segment中使用normalizationMethod='logit'。这样,输出的分数就会经过Sigmoid转换,转化为概率值。

<RegressionModel functionName="regression" modelName="ValidInputModelmodel2" algorithmName="regression" normalizationMethod="logit" targetFieldName="result">
...
</RegressionModel>

为最终输出重新命名

为了方便调用和解析PMML文件,我们需要在文件的最后为输出统一命名。通过指定OutputFieldname和对应的segmentId,我们可以清晰地标识每个输出值的来源,使得输出结果更加直观易懂。

<Output>
<OutputField name="NewScore1" feature="predictedValue" segmentId="model1Segment"/>
<OutputField name="NewScore2" feature="predictedValue" segmentId="model2Segment"/>
</Output>

通过以上步骤和优化技巧,我们可以高效地使用PMML实现多个模型的融合,处理单模型分数缺失问题,并将最终分数转换为概率值,同时为输出结果重新命名,以便于调用和解析。这样不仅提升了模型融合的准确性,也增强了生产环境中模型管理的便利性。

参考资料

使用 PMML 实现模型融合及优化技巧的更多相关文章

  1. 【机器学习入门与实践】数据挖掘-二手车价格交易预测(含EDA探索、特征工程、特征优化、模型融合等)

    [机器学习入门与实践]数据挖掘-二手车价格交易预测(含EDA探索.特征工程.特征优化.模型融合等) note:项目链接以及码源见文末 1.赛题简介 了解赛题 赛题概况 数据概况 预测指标 分析赛题 数 ...

  2. JavaScript 性能优化技巧分享

    JavaScript 作为当前最为常见的直译式脚本语言,已经广泛应用于 Web 应用开发中.为了提高Web应用的性能,从 JavaScript 的性能优化方向入手,会是一个很好的选择. 本文从加载.上 ...

  3. 第十一节,全连接网络中的优化技巧-过拟合、正则化,dropout、退化学习率等

    随着科研人员在使用神经网络训练时不断的尝试,为我们留下了很多有用的技巧,合理的运用这些技巧可以使自己的模型得到更好的拟合效果. 一 利用异或数据集演示过拟合 全连接网络虽然在拟合问题上比较强大,但太强 ...

  4. JavaScript 如何工作:渲染引擎和性能优化技巧

    翻译自:How JavaScript works: the rendering engine and tips to optimize its performance 这是探索 JavaScript ...

  5. PHP程序Laravel框架的优化技巧

    Laravel是一套简洁.优雅的php Web开发框架(PHP Web Framework).它可以让你从杂乱的代码中解脱出来,可以帮你构建一个完美的网络app,而且每行代码都简洁.富于表达力.而性能 ...

  6. 【优化技巧】指数移动平均EMA的原理

    前言 在深度学习中,经常会使用EMA(exponential moving average)方法对模型的参数做平滑或者平均,以求提高测试指标,增加模型鲁棒性. 参考 1. [优化技巧]指数移动平均(E ...

  7. Unity3D渲染优化技巧

    优化图形性能 良好的性能对大部分游戏的成功具有决定作用.下面是一些简单的指导,用来最大限度地提高游戏的图形渲染. 图形需要哪些开销 游戏的图形部分主要开销来自电脑的两个系统: GPU 或 CPU.优化 ...

  8. CUDA上的量化深度学习模型的自动化优化

    CUDA上的量化深度学习模型的自动化优化 深度学习已成功应用于各种任务.在诸如自动驾驶汽车推理之类的实时场景中,模型的推理速度至关重要.网络量化是加速深度学习模型的有效方法.在量化模型中,数据和模型参 ...

  9. SQL Server 聚合函数算法优化技巧

    Sql server聚合函数在实际工作中应对各种需求使用的还是很广泛的,对于聚合函数的优化自然也就成为了一个重点,一个程序优化的好不好直接决定了这个程序的声明周期.Sql server聚合函数对一组值 ...

  10. SQL优化技巧

    我们开发的大部分软件,其基本业务流程都是:采集数据→将数据存储到数据库中→根据业务需求查询相应数据→对数据进行处理→传给前台展示.对整个流程进行分析,可以发现软件大部分的操作时间消耗都花在了数据库相关 ...

随机推荐

  1. 3.5 Windows驱动开发:应用层与内核层内存映射

    在上一篇博文<内核通过PEB得到进程参数>中我们通过使用KeStackAttachProcess附加进程的方式得到了该进程的PEB结构信息,本篇文章同样需要使用进程附加功能,但这次我们将实 ...

  2. 13.4 DirectX内部劫持绘制

    相对于外部绘图技术的不稳定性,内部绘制则显得更加流程与稳定,在Dx9环境中,函数EndScene是在绘制3D场景后,用于完成将最终的图像渲染到屏幕的一系列操作的函数.它会将缓冲区中的图像清空,设置视口 ...

  3. 4.0 Python 变量与作用域

    在python中,变量的作用域决定了变量在哪些位置可以被访问.一个程序中的变量并不是所有的地方都可以访问的,其访问权限决定于变量的赋值位置.python中有两种最基本的变量作用域:局部作用域和全局作用 ...

  4. locate命令找不到,但是实际文件存在的情况

      locate和find命令都是linux下常用的搜索命令,但是locate命令是从一个数据库里面搜索的,它的速度比find查找要快上不少.如果存在某个文件用locate查不到的话,那么可以用upd ...

  5. 绝对凶器!NVIDIA Titan Z细节全曝光

    AMD Radeon R9 295X2已经拉开了新一代双芯卡皇大战的序幕,接下来就等NVIDIA GeForce GTX Titan Z的登场了.最新消息显示,它比原计划推迟了一个星期,将在5月8日正 ...

  6. 全流程机器视觉工程开发(三)任务前瞻 - 从opencv的安装编译说起,到图像增强和分割

    前言 最近开始做这个裂缝识别的任务了,大大小小的问题我已经摸得差不多了,然后关于识别任务和分割任务我现在也弄的差不多了. 现在开始做正式的业务,也就是我们说的裂缝识别的任务.作为前言,先来说说场景: ...

  7. Ubuntu+Minio对象存储+pm2进程管理

    Minio是一个go编写的高性能对象存储服务,它兼容Amazon S3 API.无论是静态网站的托管,还是数据存储分析,亦或是数据的备份与恢复等多种场景下,都可以为我们提供解决方案. ubuntu安装 ...

  8. STM8 bootloader 升级方案程序设计(一)

    1.前言 上一篇单片机 IAP 功能基础开发篇之APP升级(一)讲到了单片机 IAP 功能给 APP 程序升级的设计思路,这篇介绍的是具体实现方式. 这篇介绍关于 STM8 系列实现 bootload ...

  9. Oracle配置DCD避免会话被防火墙强制断开

    今天有客户反馈应用测试连接Oracle数据库的会话半小时左右未做操作就会被中断,报错ORA-3113,询问数据库是否有这样的超时设置,能否取消掉这个限制? 登上环境查看监听日志发现连接的IP和数据库I ...

  10. Centos中报错apt Command not Found

    先说结论: 在centos下用yum install xxxyum和apt-get的区别: 一般来说著名的linux系统基本上分两大类: RedHat系列:Redhat.Centos.Fedora等 ...