#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define sqr(x) ((x)*(x))
using namespace std;
const int M=;
const int N=;
int inv[M],mat[N][N];
void init(){//求逆元
inv[]=;
for(int i=;i<M;i++)
inv[i]=(M-M/i)*inv[M%i]%M;
}
int det(int c[][N],int n){//求矩阵c的n阶顺序主子式的绝对值
int i,j,k,w=,ans=;
for(i=;i<=n;i++)
for(j=;j<=n;j++) c[i][j]=(c[i][j]%M+M)%M;
for(i=;i<=n;i++){
for(j=i;j<=n;j++)//找出第i行起第i列不为0的行
if(c[i][j])break;
if(i!=j)
swap(c[i],c[j]);
ans=ans*c[i][i]%M;
for(j=i+;j<=n;j++)//第j行第i列变为0
for(k=n+;k>i;k--)//该行每列减去第i列的值*d
c[j][k]=(c[j][k]-c[i][k]*inv[c[i][i]]%M*c[j][i]%M+M)%M;
}
return ans;
}
struct point{
int x,y;
}p[N];
int same(point a,point b,point c){ //判断是否共线
return (a.x-c.x)*(b.y-c.y)==(b.x-c.x)*(a.y-c.y)
&&min(a.x,c.x)<=b.x&&max(a.x,c.x)>=b.x
&&min(a.y,c.y)<=b.y&&max(a.y,c.y)>=b.y;
}
int main(){
init();
int t,n,r;
scanf("%d",&t);
while(t--){
memset(mat,,sizeof mat);
scanf("%d%d",&n,&r);
for(int i=;i<=n;i++)
scanf("%d%d",&p[i].x,&p[i].y);
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(sqrt(sqr(p[i].x-p[j].x)+sqr(p[i].y-p[j].y))<=r){//距离不大于r
int ok=;
for(int k=;k<=n;k++)
if(k!=i&&k!=j&&same(p[i],p[k],p[j]))
ok=;
if(ok){//构造Kirchhoff矩阵
mat[i][j]=mat[j][i]=-;
mat[i][i]++;mat[j][j]++;
}
}
int ans=det(mat,n-);
printf("%d\n",ans?ans:-);
}
}

生成树计数 lighting 最终决定用这个模板! (有逆元的模板)的更多相关文章

  1. SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)

    题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...

  2. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

  3. @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列

    目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...

  4. Luogu P5296 [北京省选集训2019]生成树计数

    Luogu P5296 [北京省选集训2019]生成树计数 题目链接 题目大意:给定每条边的边权.一颗生成树的权值为边权和的\(k\)次方.求出所有生成树的权值和. 我们列出答案的式子: 设\(E\) ...

  5. bzoj1002 生成树计数 找规律

    这道题第一眼是生成树计数,n是100,是可以用O(n^3)的求基尔霍夫矩阵的n-1阶的子矩阵的行列式求解的,但是题目中并没有说取模之类的话,就不好办了. 用高精度?有分数出现. 用辗转相除的思想,让它 ...

  6. SPOJ - HIGH :Highways (生成树计数)

    Highways 题目链接:https://vjudge.net/problem/SPOJ-HIGH Description: In some countries building highways ...

  7. UVA10766:Organising the Organisation(生成树计数)

    Organising the Organisation 题目链接:https://vjudge.net/problem/UVA-10766 Description: I am the chief of ...

  8. Uva 10766 Organising the Organisation (Matrix_tree 生成树计数)

    题目描述: 一个由n个部门组成的公司现在需要分层,但是由于员工间的一些小小矛盾,使得他们并不愿意做上下级,问在满足他们要求以后有多少种分层的方案数? 解题思路: 生成树计数模板题,建立Kirchhof ...

  9. 生成树计数 Matrix-Tree 定理 学习笔记

    一直都知道要用Matrix-Tree定理来解决生成树计数问题,但是拖到今天才来学.博主数学不好也只能跟着各位大佬博客学一下它的应用以及会做题,证明实在是不会. 推荐博客: https://www.cn ...

随机推荐

  1. AcWing 11. 背包问题求方案数

    //g[i,j]表示f[i,j]取最大值的方案数目 //体积最多是j 全部为0,v>=0 //体积恰好为j f[0][0]=0,f[i]=无穷,v>=0 //体积至少是j f[0][0]= ...

  2. URLSearchParams/FormData

    一.URLSearchParams()(很好用,但有一定兼容问题,未来版本的浏览器中该功能的语法和行为可能随对应的标准文档而改变.) URLSearchParams 接口定义了一些实用的方法来处理 U ...

  3. [Arc068D/At2299] Card Eater - 结论

    [Arc068D/At2299] 有一堆牌,每张牌上有一个数字. 每次可以取出其中 \(3\) 张,丢掉数字最大的和数字最小的牌,把中间那张再放回牌堆. 要求最后所有剩余牌上的数字互不相同,求最多能剩 ...

  4. 2020牛客寒假算法基础集训营1 J. 缪斯的影响力 (矩阵快速幂/费马小定理降幂)

    https://ac.nowcoder.com/acm/problem/200658 f(n) = f(n-1) * f(n-2) * ab ,f的第一项是x,第二项是y. 试着推出第三项是x·y·a ...

  5. 马走日的解法(dfs)

    马在中国象棋以日字形规则移动. 请编写一段程序,给定n*m大小的棋盘,以及马的初始位置(x,y),要求不能重复经过棋盘上的同一个点,计算马可以有多少途径遍历棋盘上的所有点. Input 第一行为整数T ...

  6. C语言--“.”与“->”有什么区别?

    这虽然是个小问题,但有时候很容易让人迷惑,因为有的时候用混淆了,程序编译不通过.   下面说说我对它们的理解.   一般情况下用“.”,只需要声明一个结构体.格式是,结构体类型名+结构体名.然后用结构 ...

  7. centos软连接的增删

    软连接操作 增加 ln-s 源文件 软连接名 修改 ln –snf 源文件 软连接 删除 只删除软连接 rm -rf 软连接名 只删除源文件 rm -rf 源文件 -r循环 -f强制

  8. [CodeIgniter4]故障排除和本地开发服务器

    故障排除 以下是一些常见的安装问题,以及建议的解决方法. 我必须在我的URL中包含index.php 如果``/mypage/find/apple``类似的URL``/index.php/mypage ...

  9. optim.SDG 或者其他、实现随机梯度下降法

    optim.SDG 或者其他.实现随机梯度下降法 待办 实现随机梯度下降算法的参数优化方式 另外还有class torch.optim.ASGD(params, lr=0.01, lambd=0.00 ...

  10. jQuery尺寸

    jQuery 尺寸 jQuery width() 和 height() 方法 width() 方法设置或返回元素的宽度(不包括内边距.边框或外边距). height() 方法设置或返回元素的高度(不包 ...