$Poj3179\ Corral\ the\ Cows$ 二分+离散化+二维前缀和
$Description$
在一个二维平面上,有$N$颗草,每颗草的大小是$1*1$,左下角坐标为$x_i,y_i$.要求一个正方形,正方形的边平行于$x$或$y$轴,正方形里面包含至少$C$颗草.求正方形的最小边长.注意,同一个区域可能生长多颗草.
数组范围:$1<=N,C<=500\ 1<=x_i,y_i<=10000$
$Sol$
最简单暴力的方法当然就是枚举正方形的一个顶点,就定为左上顶点叭,然后再从小到大枚举边长,然后$check()$,更新答案.显然这个方法复杂度爆炸$qwq$,而且,$check()$要用到二位前缀和,而根据$x,y$的范围,这根本就存不下.
1.虽然$x,y$的范围很大,但是$N$只有$500$鸭,所以就离散化!
2.发现合法的边长是单调的.如果当前边长可以,那么更大的显然也可以,所以二分就好了.
觉得这里的离散化好妙.jpg
特别要注意$lowerbound()$和$upperbound()$的区别吖!
$Code$
//#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<algorithm>
#define il inline
#define Rg register
#define go(i,a,b) for(Rg int i=a;i<=b;++i)
#define yes(i,a,b) for(Rg int i=a;i>=b;--i)
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define db double
using namespace std;
il int read()
{
Rg int x=,y=;char c=getchar();
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+c-'';c=getchar();}
return x*y;
}
const int N=;
int n,c,as,b[N*],ct,sum[N*][N*];
struct node{int x,y;}a[];
il bool ck(int qvq)
{
if(qvq>=b[ct])return ;
Rg int ovo=upper_bound(b+,b+ct+,b[ct]-qvq+)-b-;
go(i,,ovo)
go(j,,ovo)
{
Rg int x=upper_bound(b+,b+ct+,b[i]+qvq-)-b-,y=upper_bound(b+,b+ct+,b[j]+qvq-)-b-;
if(sum[x][y]-sum[i-][y]-sum[x][j-]+sum[i-][j-]>=c)return ;
}
return ;
}
int main()
{
c=read(),n=read();
go(i,,n)a[i].x=read(),a[i].y=read(),b[++ct]=a[i].x,b[++ct]=a[i].y;
sort(b+,b+ct+);ct=unique(b+,b+ct+)-(b+);b[++ct]=;
go(i,,n)
{
Rg int x=lower_bound(b+,b+ct+,a[i].x)-b,y=lower_bound(b+,b+ct+,a[i].y)-b;
sum[x][y]++;
}
go(i,,ct)go(j,,ct)sum[i][j]+=sum[i-][j]+sum[i][j-]-sum[i-][j-];
Rg int l=,r=,mid;
while(l<=r)
{
mid=(l+r)>>;
if(ck(mid))as=mid,r=mid-;
else l=mid+;
}
printf("%d\n",as);
return ;
}
随机推荐
- windows 下的 Apache 二级域名 目录绑定配置
通常我们注册的域名都是顶级域名 如 www.potatog.com,我们希望这个域名可以访问服务器的不同网站或者不同功能等等 可能会这样 www.potatog.com/api 或者 www.pot ...
- Streamy障碍一:大批量条目
- @codeforces - 1106F@ Lunar New Year and a Recursive Sequence
目录 @description@ @solution@ @accepted code@ @details@ @description@ 定义递推数列 f: (1)f[1] = f[2] = ... f ...
- 深度学习的Xavier初始化方法
在tensorflow中,有一个初始化函数:tf.contrib.layers.variance_scaling_initializer.Tensorflow 官网的介绍为: variance_sca ...
- python特性(八):生成器对象的send方法
生成器对象是一个迭代器.但是它比迭代器对象多了一些方法,它们包括send方法,throw方法和close方法.这些方法,主要是用于外部与生成器对象的交互.本文先介绍send方法. send方法有一个参 ...
- 2-3-4 tree留坑
#include<bits/stdc++.h> #define LL long long #define pii pair<int,int> #define mp make_p ...
- C++ 第四次作业 继承
继承 继承时从新的类从已有类那里得到新的特征.继承实现了代码的重用,极大地减少了代码量,同时通过新增成员,加入了自身的独有特性,达到了程序的扩充. 派生类继承了基类的全部数据类和除了构造函数.析构函数 ...
- H3C 配置帧中继交换
- Element节点输出到System.out
protected void writeElementToFile(Element valrespEle) { try { TransformerFactory transformerFactory ...
- webpack学习(三)配置loader
首先搞清楚两个问题: 1 什么是loader? 2 为啥要用各种loader 答: loader 就是各种打包规则,为什么要用是显而易见的,因为webpack还没智能到给它什么文件都能打包,对于js文 ...