首先我们来看一下jieba分词的流程图:

结巴中文分词简介

1)支持三种分词模式:

精确模式:将句子最精确的分开,适合文本分析

全模式:句子中所有可以成词的词语都扫描出来,速度快,不能解决歧义

搜索引擎模式:在精确的基础上,对长词再次切分,提高召回

2)支持繁体分词

3)支持自定义词典

4)基于Trie树结构实现高效的词图扫描,生成句子汉字所有可能成词情况所构成的有向无环图(DAG)

5)  采用了动态规划查找最大概率路径,找出基于词频的最大切分组合 6)对于词库中不存在的词,也就是未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法

接下来我们从源码分析一下:

从github上下载源代码后,打开 文件夹 jieba,找到__init__.py,结巴分词最主要的函数 cut 就定义在这个文件中。

__cut_DAG 函数调用了 get_DAG(sentence),这是用来生成每一块(sentence)的有向无环图DAG。要生成DAG就必须有语料库的辅助了,所以在 同样在 文件夹 jieba 下,可以找到一个文件:dict.txt。语料库的有3列,第一列是词,第二列是词频,第三列是词性。在程序中初始化语料库的动作在函数  initialize(DICTIONARY) 中,它通过一个包装器 require_initialized 在 get_DAG 函数被调用的时候才执行。代码如下:

def require_initialized(fn):

@wraps(fn) #wraps的作用是保留被包装函数的一些属性,比如__doc__
def wrapped(*args, **kwargs):
global initialized
if initialized:
return fn(*args, **kwargs)
else:
initialize(DICTIONARY)
return fn(*args, **kwargs)

return wrapped
有向无环图构建
语料库Trie树加载完毕后,接下来我们来介绍如何进行DAG分词

以“正在学习大数据中的结巴分词”为例,作为待分词的输入文本。

jieba.__init__.py中实现了jieba分词接口函数cut(self, sentence, cut_all=False, HMM=True)。

jieba分词接口主入口函数,会首先将输入文本解码为Unicode编码,然后根据入参,选择不同的切分方式,本文主要以精确模式进行讲解,因此cut_all和HMM这两个入参均为默认值;

分词中get_DAG函数实现如下

# -*- coding: utf-8 -*-
import marshal

def get_DAG(sentence):

N = len(sentence)
i,j=0,0
p = trie
DAG = {}
while i<N:
c = sentence[j]
if c in p:
p = p[c]
if '' in p:
if i not in DAG:
DAG[i]=[]
DAG[i].append(j)
j+=1
if j>=N:
i+=1
j=i
p=trie
else:
p = trie
i+=1
j=i
for i in xrange(len(sentence)):
if i not in DAG:
DAG[i] =[i]
return DAG

#动态规划,计算最大概率的切分组合
def calc(self, sentence, DAG, route):
N = len(sentence)
route[N] = (0, 0)
# 对概率值取对数之后的结果(可以让概率相乘的计算变成对数相加,防止相乘造成下溢)
logtotal = log(self.total)
# 从后往前遍历句子 反向计算最大概率
for idx in xrange(N - 1, -1, -1):
# 列表推倒求最大概率对数路径
# route[idx] = max([ (概率对数,词语末字位置) for x in DAG[idx] ])
# 以idx:(概率对数最大值,词语末字位置)键值对形式保存在route中
# route[x+1][0] 表示 词路径[x+1,N-1]的最大概率对数,
# [x+1][0]即表示取句子x+1位置对应元组(概率对数,词语末字位置)的概率对数
route[idx] = max((log(self.FREQ.get(sentence[idx:x + 1]) or 1) -
logtotal + route[x + 1][0], x) for x in DAG[idx])

if __name__=='__main__':
sentence=u'正在学习大数据中的结巴分词'
trie,FREQ,total,min_freq = marshal.load(open(u'D:\jieba.cache','rb'))#使用缓存载入重要变量
rs=get_DAG(sentence)#获取DAG
route={}
calc(sentence,rs,0,route)#根据得分进行初步分词
print route
基于词频最大切分组合(从上面get_DAG中部分代码详解)
我们已经有了词库(dict.txt)的前缀字典和待分词句子sentence的DAG,基于词频的最大切分 要在所有的路径中找出一条概率得分最大的路径,该怎么做呢? 
jieba中的思路就是使用动态规划方法,从后往前遍历,选择一个频度得分最大的一个切分组合。 
具体实现见代码,已给详细注释。

#动态规划,计算最大概率的切分组合
def calc(self, sentence, DAG, route):
N = len(sentence)
route[N] = (0, 0)
# 对概率值取对数之后的结果(可以让概率相乘的计算变成对数相加,防止相乘造成下溢)
logtotal = log(self.total)
# 从后往前遍历句子 反向计算最大概率
for idx in xrange(N - 1, -1, -1):
# 列表推倒求最大概率对数路径
# route[idx] = max([ (概率对数,词语末字位置) for x in DAG[idx] ])
# 以idx:(概率对数最大值,词语末字位置)键值对形式保存在route中
# route[x+1][0] 表示 词路径[x+1,N-1]的最大概率对数,
# [x+1][0]即表示取句子x+1位置对应元组(概率对数,词语末字位置)的概率对数
route[idx] = max((log(self.FREQ.get(sentence[idx:x + 1]) or 1) -
logtotal + route[x + 1][0], x) for x in DAG[idx])
从代码中可以看出calc是一个自底向上的动态规划(重叠子问题、最优子结构),它从sentence的最后一个字(N-1)开始倒序遍历sentence的字(idx)的方式(为什么倒叙遍历,不懂的可以留言或是找我小猪),计算子句sentence[isdx~N-1]概率对数得分(这里利用DAG及历史计算结果route实现)。然后将概率对数得分最高的情况以(概率对数,词语最后一个字的位置)这样的tuple保存在route中。

那么登陆词部分解释完毕,下来就是未登陆词,利用Viterbi算法来解决未登录词的处理方法,后续更新
---------------------
作者:Jameslvt
来源:CSDN
原文:https://blog.csdn.net/Jameslvt/article/details/81118560
版权声明:本文为博主原创文章,转载请附上博文链接!

jieba分词流程及部分源码解读(一)的更多相关文章

  1. CesiumJS 2022^ 源码解读[7] - 3DTiles 的请求、加载处理流程解析

    目录 1. 3DTiles 数据集的类型 2. 创建瓦片树 2.1. 请求入口文件 2.2. 创建树结构 2.3. 瓦片缓存机制带来的能力 3. 瓦片树的遍历更新 3.1. 三个大步骤 3.2. 遍历 ...

  2. Bert系列(二)——源码解读之模型主体

    本篇文章主要是解读模型主体代码modeling.py.在阅读这篇文章之前希望读者们对bert的相关理论有一定的了解,尤其是transformer的结构原理,网上的资料很多,本文内容对原理部分就不做过多 ...

  3. Bert系列(三)——源码解读之Pre-train

    https://www.jianshu.com/p/22e462f01d8c pre-train是迁移学习的基础,虽然Google已经发布了各种预训练好的模型,而且因为资源消耗巨大,自己再预训练也不现 ...

  4. AFNetworking 3.0 源码解读(九)之 AFNetworkActivityIndicatorManager

    让我们的APP像艺术品一样优雅,开发工程师更像是一名匠人,不仅需要精湛的技艺,而且要有一颗匠心. 前言 AFNetworkActivityIndicatorManager 是对状态栏中网络激活那个小控 ...

  5. seajs 源码解读

    之前面试时老问一个问题seajs 是怎么加载js 文件的 在网上找一些资料,觉得这个写的不错就转载了,记录一下,也学习一下 seajs 源码解读 seajs 简单介绍 seajs是前端应用模块化开发的 ...

  6. HttpClient 4.3连接池参数配置及源码解读

    目前所在公司使用HttpClient 4.3.3版本发送Rest请求,调用接口.最近出现了调用查询接口服务慢的生产问题,在排查整个调用链可能存在的问题时(从客户端发起Http请求->ESB-&g ...

  7. Laravel 源码解读系列第四篇-Auth 机制

    前言 Laravel有一个神器: php artisan make:auth 能够快速的帮我们完成一套注册和登录的认证机制,但是这套机制具体的是怎么跑起来的呢?我们不妨来一起看看他的源码.不过在这篇文 ...

  8. AbstractQueuedSynchronizer源码解读

    1. 背景 AQS(java.util.concurrent.locks.AbstractQueuedSynchronizer)是Doug Lea大师创作的用来构建锁或者其他同步组件(信号量.事件等) ...

  9. AbstractQueuedSynchronizer源码解读--续篇之Condition

    1. 背景 在之前的AbstractQueuedSynchronizer源码解读中,介绍了AQS的基本概念.互斥锁.共享锁.AQS对同步队列状态流转管理.线程阻塞与唤醒等内容.其中并不涉及Condit ...

随机推荐

  1. 洛谷P1508 Likecloud-吃、吃、吃 [2017年4月计划 动态规划10]

    P1508 Likecloud-吃.吃.吃 题目背景 问世间,青春期为何物? 答曰:“甲亢,甲亢,再甲亢:挨饿,挨饿,再挨饿!” 题目描述 正处在某一特定时期之中的李大水牛由于消化系统比较发达,最近一 ...

  2. jquery tooltip.js

    1.引用关联的js脚本 <script type="text/javascript" src="script/jquery-1.3.2.min.js"&g ...

  3. webpack学习之—— Code Spliting(代码分离)

    代码分离特性能够把代码分离到不同的 bundle 中,然后可以按需加载或并行加载这些文件.代码分离可以用于获取更小的 bundle,以及控制资源加载优先级,如果使用合理,会极大影响加载时间. 有三种常 ...

  4. python中数字转换成字符串

    数字转换成字符串: num=123 str='%d' %num str就变成了"123"

  5. 常用css3属性

    总结一下在工作用常用到的属性设置 1.设置文本的可选择性 -webkit-user-select:none/text 2.设置背景的绘制区域 background-clip:border-box/pa ...

  6. 2018-12-29-WPF-如何建立自己的-3d-gis-程序

    title author date CreateTime categories WPF 如何建立自己的 3d gis 程序 lindexi 2018-12-29 14:11:11 +0800 2018 ...

  7. golang数据类型二

    字符类型 3.14基本数据类型的相互转换 3.15基本数据类型和string的转换 FormatInt // FormatUint 将 int 型整数 i 转换为字符串形式// base:进位制(2 ...

  8. oracle如何启用审计

    通过数据库初始化参数文件中的AUDIT_TRAIL 初始化参数启用和禁用数据库审计. DB  启用数据库审计并引导所有审计记录到数据库的审计跟踪 OS  启用数据库审计并引导所有审计记录到操作系统的审 ...

  9. 集合--List&&ArrayList-LinkedList

    1.8新特性  List接口中的replaceAll()方法,替换指定的元素,函数式接口编程 List  元素是有序的并且可以重复 四种add();方法 ArrayList(用于查询操作),底层是数组 ...

  10. Python之路,Day1 - Python基础1 --转自金角大王

    本节内容 Python介绍 发展史 Python 2 or 3? 安装 Hello World程序 变量 用户输入 模块初识 .pyc是个什么鬼? 数据类型初识 数据运算 表达式if ...else语 ...