文章主要介绍的是koren 08年发的论文[1],  2.3部分内容(其余部分会陆续补充上来)。
koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长。考虑到写文章目地主要是已介绍总结方法为主,所以采用Movielens 数据集。

变量介绍

部分变量介绍可以参看《基于baseline和stochastic gradient descent的个性化推荐系统

文章中,将介绍两种方法实现的简易个性化推荐系统,用RMSE评价标准,对比这两个方法的实验结果。

(1) svd + stochstic gradient descent 方法来实现系统。

(2) baseline + svd + stochastic gradient descent 方法来实现系统。

注:

方法1: svd + stochastic gradient descent

svd:

cost  function:

梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小)

具体代码实现:

'''''
Created on Dec 13, 2012 @Author: Dennis Wu
@E-mail: hansel.zh@gmail.com
@Homepage: http://blog.csdn.net/wuzh670 Data set download from : http://www.grouplens.org/system/files/ml-100k.zip
''' from operator import itemgetter, attrgetter
from math import sqrt
import random def load_data(): train = {}
test = {}
filename_train = 'data/ua.base'
filename_test = 'data/ua.test' for line in open(filename_train):
(userId, itemId, rating, timestamp) = line.strip().split('\t')
train.setdefault(userId,{})
train[userId][itemId] = float(rating) for line in open(filename_test):
(userId, itemId, rating, timestamp) = line.strip().split('\t')
test.setdefault(userId,{})
test[userId][itemId] = float(rating) return train, test def calMean(train):
stat = 0
num = 0
for u in train.keys():
for i in train[u].keys():
stat += train[u][i]
num += 1
mean = stat*1.0/num
return mean def initialFeature(feature, userNum, movieNum): random.seed(0)
user_feature = {}
item_feature = {}
i = 1
while i < (userNum+1):
si = str(i)
user_feature.setdefault(si,{})
j = 1
while j < (feature+1):
sj = str(j)
user_feature[si].setdefault(sj,random.uniform(0,1))
j += 1
i += 1 i = 1
while i < (movieNum+1):
si = str(i)
item_feature.setdefault(si,{})
j = 1
while j < (feature+1):
sj = str(j)
item_feature[si].setdefault(sj,random.uniform(0,1))
j += 1
i += 1
return user_feature, item_feature def svd(train, test, userNum, movieNum, feature, user_feature, item_feature): gama = 0.02
lamda = 0.3
slowRate = 0.99
step = 0
preRmse = 1000000000.0
nowRmse = 0.0 while step < 100:
rmse = 0.0
n = 0
for u in train.keys():
for i in train[u].keys():
pui = 0
k = 1
while k < (feature+1):
sk = str(k)
pui += user_feature[u][sk] * item_feature[i][sk]
k += 1
eui = train[u][i] - pui
rmse += pow(eui,2)
n += 1
k = 1
while k < (feature+1):
sk = str(k)
user_feature[u][sk] += gama*(eui*item_feature[i][sk] - lamda*user_feature[u][sk])
item_feature[i][sk] += gama*(eui*user_feature[u][sk] - lamda**item_feature[i][sk])
k += 1 nowRmse = sqrt(rmse*1.0/n)
print 'step: %d Rmse: %s' % ((step+1), nowRmse)
if (nowRmse < preRmse):
preRmse = nowRmse gama *= slowRate
step += 1 return user_feature, item_feature def calRmse(test, user_feature, item_feature, feature): rmse = 0.0
n = 0
for u in test.keys():
for i in test[u].keys():
pui = 0
k = 1
while k < (feature+1):
sk = str(k)
pui += user_feature[u][sk] * item_feature[i][sk]
k += 1
eui = pui - test[u][i]
rmse += pow(eui,2)
n += 1
rmse = sqrt(rmse*1.0 / n)
return rmse; if __name__ == "__main__": # load data
train, test = load_data()
print 'load data success' # initial user and item feature, respectly
user_feature, item_feature = initialFeature(100, 943, 1682)
print 'initial user and item feature, respectly success' # baseline + svd + stochastic gradient descent
user_feature, item_feature = svd(train, test, 943, 1682, 100, user_feature, item_feature)
print 'svd + stochastic gradient descent success' # compute the rmse of test set
print 'the Rmse of test test is: %s' % calRmse(test, user_feature, item_feature, 100)

方法2:baseline + svd + stochastic gradient descent

baseline + svd:

object function:

梯度变化(利用stochastic gradient descent算法使上述的目标函数值,在设定的迭代次数内,降到最小)

方法2: 具体代码实现

'''''
Created on Dec 13, 2012 @Author: Dennis Wu
@E-mail: hansel.zh@gmail.com
@Homepage: http://blog.csdn.net/wuzh670 Data set download from : http://www.grouplens.org/system/files/ml-100k.zip
''' from operator import itemgetter, attrgetter
from math import sqrt
import random def load_data(): train = {}
test = {}
filename_train = 'data/ua.base'
filename_test = 'data/ua.test' for line in open(filename_train):
(userId, itemId, rating, timestamp) = line.strip().split('\t')
train.setdefault(userId,{})
train[userId][itemId] = float(rating) for line in open(filename_test):
(userId, itemId, rating, timestamp) = line.strip().split('\t')
test.setdefault(userId,{})
test[userId][itemId] = float(rating) return train, test def calMean(train):
stat = 0
num = 0
for u in train.keys():
for i in train[u].keys():
stat += train[u][i]
num += 1
mean = stat*1.0/num
return mean def initialBias(train, userNum, movieNum, mean): bu = {}
bi = {}
biNum = {}
buNum = {} u = 1
while u < (userNum+1):
su = str(u)
for i in train[su].keys():
bi.setdefault(i,0)
biNum.setdefault(i,0)
bi[i] += (train[su][i] - mean)
biNum[i] += 1
u += 1 i = 1
while i < (movieNum+1):
si = str(i)
biNum.setdefault(si,0)
if biNum[si] >= 1:
bi[si] = bi[si]*1.0/(biNum[si]+25)
else:
bi[si] = 0.0
i += 1 u = 1
while u < (userNum+1):
su = str(u)
for i in train[su].keys():
bu.setdefault(su,0)
buNum.setdefault(su,0)
bu[su] += (train[su][i] - mean - bi[i])
buNum[su] += 1
u += 1 u = 1
while u < (userNum+1):
su = str(u)
buNum.setdefault(su,0)
if buNum[su] >= 1:
bu[su] = bu[su]*1.0/(buNum[su]+10)
else:
bu[su] = 0.0
u += 1 return bu,bi def initialFeature(feature, userNum, movieNum): random.seed(0)
user_feature = {}
item_feature = {}
i = 1
while i < (userNum+1):
si = str(i)
user_feature.setdefault(si,{})
j = 1
while j < (feature+1):
sj = str(j)
user_feature[si].setdefault(sj,random.uniform(0,1))
j += 1
i += 1 i = 1
while i < (movieNum+1):
si = str(i)
item_feature.setdefault(si,{})
j = 1
while j < (feature+1):
sj = str(j)
item_feature[si].setdefault(sj,random.uniform(0,1))
j += 1
i += 1
return user_feature, item_feature def svd(train, test, mean, userNum, movieNum, feature, user_feature, item_feature, bu, bi): gama = 0.02
lamda = 0.3
slowRate = 0.99
step = 0
preRmse = 1000000000.0
nowRmse = 0.0 while step < 100:
rmse = 0.0
n = 0
for u in train.keys():
for i in train[u].keys():
pui = 1.0 * (mean + bu[u] + bi[i])
k = 1
while k < (feature+1):
sk = str(k)
pui += user_feature[u][sk] * item_feature[i][sk]
k += 1
eui = train[u][i] - pui
rmse += pow(eui,2)
n += 1
bu[u] += gama * (eui - lamda * bu[u])
bi[i] += gama * (eui - lamda * bi[i])
k = 1
while k < (feature+1):
sk = str(k)
user_feature[u][sk] += gama*(eui*item_feature[i][sk] - lamda*user_feature[u][sk])
item_feature[i][sk] += gama*(eui*user_feature[u][sk] - lamda*item_feature[i][sk])
k += 1 nowRmse = sqrt(rmse*1.0/n)
print 'step: %d Rmse: %s' % ((step+1), nowRmse)
if (nowRmse < preRmse):
preRmse = nowRmse gama *= slowRate
step += 1
return user_feature, item_feature, bu, bi def calRmse(test, bu, bi, user_feature, item_feature, mean, feature): rmse = 0.0
n = 0
for u in test.keys():
for i in test[u].keys():
pui = 1.0 * (mean + bu[u] + bi[i])
k = 1
while k < (feature+1):
sk = str(k)
pui += user_feature[u][sk] * item_feature[i][sk]
k += 1
eui = pui - test[u][i]
rmse += pow(eui,2)
n += 1
rmse = sqrt(rmse*1.0 / n)
return rmse; if __name__ == "__main__": # load data
train, test = load_data()
print 'load data success' # Calculate overall mean rating
mean = calMean(train)
print 'Calculate overall mean rating success' # initial user and item Bias, respectly
bu, bi = initialBias(train, 943, 1682, mean)
print 'initial user and item Bias, respectly success' # initial user and item feature, respectly
user_feature, item_feature = initialFeature(100, 943, 1682)
print 'initial user and item feature, respectly success' # baseline + svd + stochastic gradient descent
user_feature, item_feature, bu, bi = svd(train, test, mean, 943, 1682, 100, user_feature, item_feature, bu, bi)
print 'baseline + svd + stochastic gradient descent success' # compute the rmse of test set
print 'the Rmse of test test is: %s' % calRmse(test, bu, bi, user_feature, item_feature, mean, 100)

实验参数设置:

(gama = 0.02  lamda =0.3)

feature = 100 maxstep = 100 slowRate = 0.99(随着迭代次数增加,梯度下降幅度越来越小)

方法1结果:Rmse of test set : 1.00422938926

方法2结果:Rmse of test set : 0.963661477881

REFERENCES

1.Y. Koren. Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model. Proc. 14th ACM SIGKDD Int. Conf. On Knowledge Discovery and Data Mining  (KDD’08), pp. 426–434, 2008.

2. Y.Koren.  The BellKor Solution to the Netflix Grand Prize  2009

 


 
 

基于baseline、svd和stochastic gradient descent的个性化推荐系统的更多相关文章

  1. 基于baseline和stochastic gradient descent的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.1 部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文 ...

  2. FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?

    FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...

  3. Stochastic Gradient Descent

    一.从Multinomial Logistic模型说起 1.Multinomial Logistic 令为维输入向量; 为输出label;(一共k类); 为模型参数向量: Multinomial Lo ...

  4. Stochastic Gradient Descent 随机梯度下降法-R实现

    随机梯度下降法  [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 批量梯度下降法在权值更新前对所有样本汇总 ...

  5. 机器学习-随机梯度下降(Stochastic gradient descent)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  6. 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)

    https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...

  7. Stochastic Gradient Descent收敛判断及收敛速度的控制

    要判断Stochastic Gradient Descent是否收敛,可以像Batch Gradient Descent一样打印出iteration的次数和Cost的函数关系图,然后判断曲线是否呈现下 ...

  8. Gradient Descent 和 Stochastic Gradient Descent(随机梯度下降法)

    Gradient Descent(Batch Gradient)也就是梯度下降法是一种常用的的寻找局域最小值的方法.其主要思想就是计算当前位置的梯度,取梯度反方向并结合合适步长使其向最小值移动.通过柯 ...

  9. 随机梯度下降法(Stochastic gradient descent, SGD)

    BGD(Batch gradient descent)批量梯度下降法:每次迭代使用所有的样本(样本量小)    Mold 一直在更新 SGD(Stochastic gradientdescent)随机 ...

随机推荐

  1. delphi 用户可以点击格式修改进行模板修改

    过程 TlistRepAdd.Btn_GCListRepEditClick窗口 TlistRepAdd 补打流程单 1. 给用户权限 呈现出格式修改按钮 procedure TlistRepAdd.B ...

  2. Estimation

    Estimation 给出一个长度为n序列\(\{a_i\}\),将其划分成连续的K段,对于其中一段\([l,r]\),设其中位数为m,定义其权值为\(\sum_{i=l}^r|m-a_i|\),求最 ...

  3. 【JZOJ6388】小w的作业

    description analysis 二分一个角度,首先假设该弧度角\(\theta \in[{\pi \over 2},\pi]\),要找的直线斜率\(k\in(-∞,\tan\theta]\) ...

  4. 简单的 js手写轮播图

    html: <div class="na1">   <div class="pp">    <div class="na ...

  5. 列表中的index,extend,count方法

    列表中的index,extend,count方法 #_author:Administrator#date:2019/10/24#1.index方法l=['blue','red','white','bl ...

  6. 使用ajax怎么请求跨域资源

    1.ajax中添加“xhrFields”和“crossDomain”,如: $.ajax({ url: url, data: data, type: "post", xhrFiel ...

  7. jmeter+ant+jenkins 搭建接口自动化测试环境

    过程参考:http://www.cnblogs.com/lxs1314/p/7487066.html 1. 安装ant 2. 安装jenkins 遇到问题: 启动Tomcat后,访问http://lo ...

  8. PSCC2019常用基础操作

    一.常用设置 1.界面设置(快捷键Ctrl+K):可以对PS界面的颜色.导出格式.性能等等进行设置(这里暂存盘建议设置D盘或F盘,默认C盘). 2.常用面板整理(菜单栏->窗口) 二.常用快捷键 ...

  9. mysql 新特性之geometry

    1.获取矩形两个点的数据(左上角和右下角) SELECT  *    FROM    t_location    WHERE   MBRContains                    (    ...

  10. SPSS分析:Bootstrap

    SPSS分析:Bootstrap 一.原理: 非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法,也称为自助法.其核心思想和基本步骤如下: 1.采用重抽样技术从原始样本中抽取一定数量(自己 ...