R语言数据分析利器data.table包—数据框结构处理精讲
R语言数据分析利器data.table包—数据框结构处理精讲
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快。包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部处理的步骤进行了程序上的优化,使用多线程,甚至很多函数是使用C写的,大大加快数据运行速度。因此,在对大数据处理上,使用data.table无疑具有极高的效率。这里我们主要讲的是它对数据框结构的快捷处理。
和data.frame的高度兼容
DT = data.table(x=rep(c("b","a","c"),each=3), y=c(1,3,6),
v=1:9)
下面DT都是用这个data.table
可见它是属于data.table和data.frame类,并且取列,维数,都可以采用data.frame的方法。
DF = data.frame(x=rep(c("b","a","c"),each=3), y=c(1,3,6),
v=1:9)
DT = data.table(x=rep(c("b","a","c"),each=3), y=c(1,3,6),
v=1:9)
DF
DT
identical(dim(DT), dim(DF)) # TRUE
identical(DF$a, DT$a) # TRUE
is.list(DF) # TRUE
is.list(DT) # TRUE
is.data.frame(DT) # TRUE
不过data.frame默认将非数字转化为因子;而data.table 会将非数字转化为字符
data.table数据框也可使用dplyr包的管道,这里不作阐述。
data.table常用的函数
as.data.table(x, keep.rownames=FALSE,
...) 将一个R对象转化为data.table,R可以时矢量,列表,data.frame等,keep.rownames决定是否保留行名或者列表名,默认FALSE,如果TRUE,将行名存在"rn"行中,keep.rownames="id",行名保存在"id"行中。
DF = data.frame(x=rep(c("b","a","c"),each=3), y=c(1,3,6), v=1:9)
#新建data.frame DF
DT=as.data.table(DF,keep.rownames=TRUE)
setDT(x, keep.rownames=FALSE, key=NULL,
check.names=FALSE) 把一个R对象转化为data.table,比as.data.table快,因为以传地址的方式直接修改原对象,没有拷贝
copy(x) 深度拷贝一个data.table,x即data.table对象。data.table为了加快速度,会直接在对象地址修改,因此如果需要就要在修改前copy,直接修改的命令有:=添加一列,set系列命令比如下面提到的setattr,setnames,setorder等;当使用dt_names
=
names(DT)的时候,修改dt_names会修改原data.table的列名,如果不想被修改,这个时候应copy原data.table,也可以使用dt_names
<-
copy(names(DT))直接copy列名,这样不必copy整个data.table。
kDT=copy(DT)
#kDT时DT的一个copy
rowid(..., prefix=NULL)
产生unique的id,prefix参数在id前面加前缀
setattr 设置DT的属性,setattr(x,name,value)
x时data.table,list或者data.frame,而name时属性名,value时属性值,setnames(x,old,new),设置x的列名,old是旧列名或者数字位置,new是新列名
setcolorder(x,neworder) 重新安排列的顺序,neworder字符矢量或者行数
set(DT,rownum,colnum,value)直接修改某个位置的值,rownum行号,colnum,列号,行号列号推荐使用整型,保证最快速度,方法是在数字后面加L,比如1L,value是需要赋予的值。比:=还快,通常和循环配合使用
至于这个操作究竟有多快,可以看一下(参照官方manual的命令),另外个人觉得最牛的三个函数是set(),fread,和fwrite
fread
fread(input, sep="auto", sep2="auto", nrows=-1L, header="auto",
na.strings="NA", file,
stringsAsFactors=FALSE, verbose=getOption("datatable.verbose"),
autostart=1L,
skip=0L, select=NULL, drop=NULL, colClasses=NULL,
integer64=getOption("datatable.integer64"),
# default: "integer64"
dec=if (sep!=".") "." else ",", col.names,
check.names=FALSE, encoding="unknown", quote="\"",
strip.white=TRUE, fill=FALSE, blank.lines.skip=FALSE,
key=NULL,
showProgress=getOption("datatable.showProgress"), # default:
TRUE
data.table=getOption("datatable.fread.datatable") # default:
TRUE
)
input输入的文件,或者字符串(至少有一个"\n");
sep列之间的分隔符;
sep2,分隔符内再分隔的分隔符,功能还没有应用;
nrow,读取的行数,默认-l全部,nrow=0仅仅返回列名;
header第一行是否是列名;
na.strings,对NA的解释;
file文件路径,再确保没有执行shell命令时很有用,也可以在input参数输入;
stringsASFactors是否转化字符串为因子,
verbose,是否交互和报告运行时间;
autostart,机器可读这个区域任何行号,默认1L,如果这行是空,就读下一行;
skip跳过读取的行数,为1则从第二行开始读,设置了这个选项,就会自动忽略autostart选项,也可以是一个字符,skip="string",那么会从包含该字符的行开始读;
select,需要保留的列名或者列号,不要其它的;
drop,需要取掉的列名或者列号,要其它的;
colClasses,类字符矢量,用于罕见的覆盖而不是常规使用,只会使一列变为更高的类型,不能降低类型;
integer64,读如64位的整型数;
dec,小数分隔符,默认"."不然就是","
col.names,给列名,默认试用header或者探测到的,不然就是V 列号;
encoding,默认"unknown",其它可能"UTF-8"或者"Latin-1",不是用来重新编码的,而是允许处理的字符串在本机编码;
quote,默认""",如果以双引开头,fread强有力的处理里面的引号,如果失败了就会用其它尝试,如果设置quote="",默认引号不可用
strip.white,默认TRUE,删除结尾空白符,如果FALSE,只取掉header的结尾空白符;
fill,默认FALSE,如果TRUE,不等长的区域可以自动填上,利于文件顺利读入;
blank.lines.skip,默认FALSE,如果TRUE,跳过空白行
key,设置key,用一个或多个列名,会传递给setkey
showProgress,TRUE会显示脚本进程,R层次的C代码
data.table,TRUE返回data.table,FALSE返回data.frame
实例如下,1.8GB的数据读入94秒,可见读入文件速度非常快,
fwrite
fwrite(x, file = "", append = FALSE, quote = "auto",
sep = ",", sep2 = c("","|",""),
eol = if (.Platform$OS.type=="windows") "\r\n" else "\n",
na = "", dec = ".", row.names = FALSE, col.names = TRUE,
qmethod = c("double","escape"),
logicalAsInt = FALSE, dateTimeAs =
c("ISO","squash","epoch","write.csv"),
buffMB = 8L, nThread = getDTthreads(),
showProgress = getOption("datatable.showProgress"),
verbose = getOption("datatable.verbose"))
x,具有相同长度的列表,比如data.frame和data.table等;
file,输出文件名,""意味着直接输出到操作台;
append,如果TRUE,在原文件的后面添加;
quote,如果"auto",因子和列名只有在他们需要的时候才会被加上双引号,例如该部分包括分隔符,或者以"\n"结尾的一行,或者双引号它自己,如果FALSE,那么区域不会加上双引号,如果TRUE,就像写入CSV文件一样,除了数字,其它都加上双引号;
sep,列之间的分隔符;
sep2,对于是list的一列,写出去时list成员间以sep2分隔,它们是处于一列之内,然后内部再用字符分开;
eol,行分隔符,默认Windows是"\r\n",其它的是"\n";
na,na值的表示,默认"";
dec,小数点的表示,默认".";
row.names,是否写出行名,因为data.table没有行名,所以默认FALSE;
col.names
,是否写出列名,默认TRUE,如果没有定义,并且append=TRUE和文件存在,那么就会默认使用FALSE;
qmethod,怎样处理双引号,"escape",类似于C风格,用反斜杠逃避双引,“double",默认,双引号成对;
logicalAsInt,逻辑值作为数字写出还是作为FALSE和TRUE写出;
dateTimeAS, 决定 Date/IDate,ITime和POSIXct的写出,"ISO"默认,-2016-09-12,
18:12:16和2016-09-12T18:12:16.999999Z;"squash",-20160912,181216和20160912181216999;"epoch",-17056,65536和1473703936;"write.csv",就像write.csv一样写入时间,仅仅对POSIXct有影响,as.character将digits.secs转化字符并通过R内部UTC转回本地时间。前面三个选项都是用新的特定C代码写的,较快
buffMB,每个核心给的缓冲大小,在1到1024之间,默认80MB
nThread,用的核心数。
showProgress,在工作台显示进程,当用file==""时,自动忽略此参数
verbose,是否交互和报告时间
data.table数据框结构处理语法
data.table[ i , j , by]
i 决定显示的行,可以是整型,可以是字符,可以是表达式,j
是对数据框进行求值,决定显示的列,by对数据进行指定分组,除了by ,也可以添加其它的一系列参数:
keyby,with,nomatch,mult,rollollends,which,.SDcols,on。
i 决定显示的行
DT = data.table(x=rep(c("b","a","c"),each=3), y=c(1,3,6),
v=1:9) #新建data.table对象DT
DT[2] #取第二行
DT[2:3] #取第二到第三行
DT[order(x)]
#将DT按照X列排序,简化操作,另外排序也可以setkey(DT,x),出来的DT就已经是按照x列排序的了。用haskey(DT)判断DT是否已经设置了key,可以设置多个列作为key
DT[y>2]
# DT$y>2的行
DT[!2:4] #除了2到4行剩余的行
DT["a",on="x"] #on
参数,DT[D,on=c("x","y")]取DT上"x","y"列上与D上的列相关联的行。比如此例取出DT 中 X
列为"a"的行。on参数的第一列必须是DT的第一列
DT[.("a"), on="x"] #和上面一样.()有类似与c()的作用
DT["a", on=.(x)] #和上面一样
DT[x=="a"] #
和上面一样,和使用on一样,都是使用二分查找法,所以它们速度比用data.frame的快。也可以用setkey之后的DT,输入DT["a"]或者DT["a",on=.(x)]如果有几个key的话推荐用on
DT[x!="b" | y!=3] #x列不等于"b"或者y列不等于3的行
DT[.("b", 3), on=.(x, v)]
#取DT的x,v列上x="b",v=3的行
j 对数据框进行求值输出
j
参数对数据进行运算,比如sum,max,min,tail等基本函数,输出基本函数的计算结果,还可以用n输出第n列,.N(总列数,直接在j输入.N取最后一列),:=(直接在data.table上添加列,没有copy过程,所以快,有需要的话注意备份),.SD输出子集,.SD[n]输出子集的第n列,DT[,.(a
= .(), b = .())] 输出一个a、b列的数据框,.()就是要输入的a、b列的内容,还可以将一系列处理放入大括号,如{tmp
<- mean(y);.(a = a-tmp, b = b-tmp)}
DT[,y] #返回y列,矢量
DT[,.(y)]
#返回y列,返回data.table
DT[, sum(y)] #对y列求和
DT[, .(sv=sum(v))]
#对y列求和,输出sv列,列中的内容就是sum(v)
DT[, .(sum(y)), by=x] #
对x列进行分组后对各分组y列求总和
DT[, sum(y), keyby=x]
#对x列进行分组后对各分组y列求和,并且结果按照x排序
DT[, sum(y), by=x][order(x)]
#和上面一样,采取data.table的链接符合表达式
DT[v>1, sum(y),
by=v]
#对v列进行分组后,取各组中v>1的行出来,各组分别对定义的行中的y求和
DT[, .N, by=x] #用by对DT 用x分组后,取每个分组的总列数
DT[, .SD, .SDcols=x:y] #用.SDcols
定义SubDadaColums(子列数据),这里取出x到之间的列作为子集,然后.SD 输出所有子集
DT[2:5, cat(y, "\n")] #直接在j
用cat函数,输出2到5列的y值
DT[, plot(a,b), by=x]
#直接在j用plot函数画图,对于每个x的分组画一张图
DT[, m:=mean(v), by=x]
#对DT按x列分组,直接在DT上再添加一列m,m的内容是mean(v),直接修改并且不输出到屏幕上
DT[, m:=mean(v), by=x] #加[]将结果输出到屏幕上
DT[,c("m","n"):=list(mean(v),min(v)), by=x][] # 按x分组后同时添加m,n
两列,内容是分别是mean(v)和min(v),并且输出到屏幕
DT[,
`:=`(m=mean(v),n=min(v)),by=x][]
#内容和上面一样,另外的写法
DT[,(seq = min(y):max(v)), by=x]
#输出seq列,内容是min(a)到max(b)
DT[, c(.(y=max(y)), lapply(.SD, min)), by=x,
.SDcols=y:v]
#对DT取y:v之间的列,按x分组,输出max(y),对y到v之间的列每列求最小值输出。
by,on,with等参数
by 对数据进行分组
on DT[D,on=c("x","y")]取DT上"x","y"列上与D上的列相关联的行
DT[X, on="x"] #左联接
X[DT, on="x"] #右联接
DT[X, on="x", nomatch=0]
#内联接,nomatch=0表示不返回不匹配的行,nomatch=NA表示以NA返回不匹配的值
with 默认是TRUE,列名能够当作变量使用,即x相当于DT$"x",当是FALSE时,列名仅仅作为字符串,可以用传统data.frame方法并且返回data.table,x[,
cols, with=FALSE] 和x[, .SD, .SDcols=cols]一样
mult 当有i
中匹配到的有多行时,mult控制返回的行,"all"返回全部(默认),"first",返回第一行,"last"返回最后一行
roll 当i中全部行匹配只有某一行不匹配时,填充该行空白,
Inf(或者TRUE)用上一行的值填充,-Inf用下一行的值填充,输入某数字时,表示能够填充的距离,near用最近的行填充
rollends 填充首尾不匹配的行,TRUE填充,FALSE不填充,与roll一同使用
which TRUE返回匹配的行号,NA返回不匹配的行号,默认FALSE返回匹配的行
.SDcols 取特定的列,然后.SD就包括了页写选定的特定列,可以对这些子集应用函数处理
allow.cartesian FALSE防止结果超出nrow(x)
nrow(i)行,常常因为i中有重复的列而超出。这里的cartesian和传统上的cartesian不一样。
R语言数据分析利器data.table包—数据框结构处理精讲的更多相关文章
- R语言数据分析利器data.table包 —— 数据框结构处理精讲
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理 ...
- R语言学习 第三篇:数据框
数据框(data.frame)是最常用的数据结构,用于存储二维表(即关系表)的数据,每一列存储的数据类型必须相同,不同数据列的数据类型可以相同,也可以不同,但是每列的行数(长度)必须相同.数据框的每列 ...
- R语言data.table包fread读取数据
R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数 ...
- R︱高效数据操作——data.table包(实战心得、dplyr对比、key灵活用法、数据合并)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 由于业务中接触的数据量很大,于是不得不转战开始 ...
- R语言数据分析系列之五
R语言数据分析系列之五 -- by comaple.zhang 本节来讨论一下R语言的基本图形展示,先来看一张效果图吧. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi ...
- R语言数据分析系列六
R语言数据分析系列六 -- by comaple.zhang 上一节讲了R语言作图,本节来讲讲当你拿到一个数据集的时候怎样下手分析,数据分析的第一步.探索性数据分析. 统计量,即统计学里面关注的数据集 ...
- R语言入门级实例——用igragh包分析社群
R语言入门级实例——用igragh包分析社群 引入—— 本文的主要目的是初步实现R的igraph包的基础功能,包括绘制关系网络图(social relationship).利用算法进行社群发现(com ...
- data.table包简介
data.table包主要特色是:设置keys.快速分组和滚得时序的快速合并.data.table主要通过二元检索法大大提高数据操作的效率,同时它也兼容适用于data.frame的向量检索法. req ...
- 使用 data.table 包操作数据
在第一节中,我们回顾了许多用于操作数据框的内置函数.然后,了解了 sqldf 扩展包,它使得简单的数据查询和统计变得更简便.然而,两种方法都有各自的局限性.使用内置函数可能既繁琐又缓慢,而相对于各式各 ...
随机推荐
- springcloud之配置中心用法
一.配置文件服务器server端 1.构建server端所需jar <dependencies> <dependency> <groupId>org.springf ...
- [HEOI2016/TJOI2016]排序 线段树+二分
[HEOI2016/TJOI2016]排序 内存限制:256 MiB 时间限制:6000 ms 标准输入输出 题目类型:传统 评测方式:文本比较 题目描述 在2016年,佳媛姐姐喜欢上了数字序列.因而 ...
- Tool-XManager:XManager(远端X窗口系统的工具)
ylbtech-Tool-XManager:XManager(远端X窗口系统的工具) Xmanager是一款小巧.便捷的浏览远端X窗口系统的工具.在工作中经常使用Xmanager来登录远端的Solar ...
- cookie - 提示上一次访问该网页的时间
案例:记住上一次访问时间 1. 需求: 1. 访问一个Servlet,如果是第一次访问,则提示:您好,欢迎您首次访问. 2. ...
- PHP中的符号 ->、=> 和 :: 的含义(用法)
php新手经常碰到的问题,->.=> 和 :: 这三个家伙是什么分别都是做什么的啊!看着就很晕. 没关系,下面我们做一下详细的解释,如果你有C++,Perl基础,你会发现这些家伙和他们里面 ...
- 封装MySQL C API 基本操作
根据我的以前的文章 http://blog.csdn.net/skyhuangdan/article/details/21099929 链接数据库成功后进行封装. 我封装类使用的是VS2005下的wi ...
- 你真的会用Action的模型绑定吗?
在QQ群或者一些程序的交流平台,经常会有人问:我怎么传一个数组在Action中接收.我传的数组为什么Action的model中接收不到.或者我在ajax的data中设置了一些数组,为什么后台还是接收不 ...
- LINUX查询登录主机的用户工具:w 、who 、users
w.who和users工具,是查询已登录当前主机的用户:另外finger -s 也同样能查询:侧重点不一样:请自己对比着看:毕竟简单,这里只是介绍 : [beinan@localhost ~]$ w ...
- C++11的for循环的新用法
字符串 string str = "this is a string"; for(auto ch : str) cout << ch << endl; 等价 ...
- loj2322 「清华集训 2017」Hello world!
https://loj.ac/problem/2322 先吐槽一下,sb数据毁我青春败我前程. 首先,一个数开根开不了多少次. 当我们把它开到1的时候,我们以后就不需要开他了,我们可以利用并查集跳过他 ...