题目描述

在一个 n*n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示。棋盘上某些方格设置了障碍,骑士不得进入。

对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置多少个骑士,使得它们彼此互不攻击。

输入格式

第一行有 2 个正整数 n 和 m(1<=n<=200,0<=m<n2) (1<=n<=200, 0<=m<n^2)(1<=n<=200,0<=m<n​2​​),分别表示棋盘的大小和障碍数。接下来的 m 行给出障碍的位置。每行 2 个正整数,表示障碍的方格坐标。

输出格式

将计算出的共存骑士数输出。

样例

input

3 2
1 1
3 3

output

5
//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=200*200+10,maxm=4*maxn+maxn;
int n,k,S,T,tot;
bool pl[maxn]; int aa;char cc;
int read() {
aa=0;cc=getchar();
while(cc<'0'||cc>'9') cc=getchar();
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
return aa;
} struct Node{
int x,y,cap,flow;
}node[2*maxm]; int cur[maxn];
int fir[maxn],nxt[2*maxm],e=1;
void add(int x,int y,int z) {
node[++e].x=x;node[e].y=y;node[e].cap=z; nxt[e]=fir[x];fir[x]=e;
node[++e].x=y;node[e].y=x;node[e].cap=0; nxt[e]=fir[y];fir[y]=e;
} int zz[maxn],dis[maxn],s=1,t=0;
bool BFS() {
memset(dis,-1,sizeof(dis));
dis[S]=0; s=1,t=0;zz[++t]=S;
int x,y;
while(s<=t) {
x=zz[s];s++;
for(y=fir[x];y;y=nxt[y]) {
if(node[y].flow>=node[y].cap||dis[node[y].y]!=-1) continue;
dis[node[y].y]=dis[x]+1;
zz[++t]=node[y].y;
}
}
return dis[T]!=-1;
} int DFS(int pos,int maxf) {
if(pos==T||!maxf) return maxf;
int rs=0,now;
for(int &y=cur[pos];y;y=nxt[y]) {
if(node[y].flow>=node[y].cap||dis[node[y].y]!=dis[node[y].x]+1) continue;
now=DFS(node[y].y,min(maxf,node[y].cap-node[y].flow));
node[y].flow+=now;
node[y^1].flow-=now;
rs+=now;
maxf-=now;
}
if(!rs) dis[pos]=-1;
return rs;
} int Dinic() {
int rs=0;
while(BFS()) {
memcpy(cur,fir,sizeof(fir));
rs+=DFS(S,0x3f3f3f3f);
}
return rs;
} int main() {
n=read();k=read();tot=n*n;
int x,y; S=tot+1;T=S+1;
for(int i=1;i<=k;++i) {
x=read();y=read();
tot--;
pl[(x-1)*n+y]=1;
}
for(int i=1;i<=n;++i) for(int j=1;j<=n;++j) {
x=(i-1)*n+j;
if(pl[x]) continue;
if((i+j)%2==0) add(S,x,1); else add(x,T,1);
for(int r=1;r<=2;++r) {
if(i>r) {
int rr=3-r;
if(j>rr) {
y=x-r*n-rr;
if(!pl[y]) {
if((i+j)%2==0) add(x,y,1); else add(y,x,1);
}
}
if(j<=n-rr) {
y=x-r*n+rr;
if(!pl[y]) {
if((i+j)%2==0) add(x,y,1); else add(y,x,1);
}
}
}
}
}
printf("%d",tot-Dinic());
return 0;
}

  

网络流24题 骑士共存(DCOJ8023)的更多相关文章

  1. AC日记——[网络流24题]骑士共存 cogs 746

    746. [网络流24题] 骑士共存 ★★☆   输入文件:knight.in   输出文件:knight.out   简单对比时间限制:1 s   内存限制:128 MB 骑士共存问题 «问题描述: ...

  2. Cogs 746. [网络流24题] 骑士共存(最大独立集)

    [网络流24题] 骑士共存 ★★☆ 输入文件:knight.in 输出文件:knight.out 简单对比 时间限制:1 s 内存限制:128 MB 骑士共存问题 «问题描述: 在一个n*n个方格的国 ...

  3. COGS746. [网络流24题] 骑士共存

    骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志 ...

  4. [网络流24题] 骑士共存(cogs 746)

    骑士共存问题«问题描述:在一个n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘 上某些方格设置了障碍,骑士不得进入. «编程任务:对于给定的n*n个方格的国际象棋棋盘和障碍标志 ...

  5. 网络流24题——骑士共存问题 luogu 3355

    题目描述:这里 从这里开始,我们涉及到了一个新的问题:最小割问题 首先给出一些定义(本人根据定义自己口胡的): 一个流网络中的一个割是一个边集,使得割掉这些边集后源点与汇点不连通 而最小割问题就是一个 ...

  6. loj #6226. 「网络流 24 题」骑士共存问题

    #6226. 「网络流 24 题」骑士共存问题   题目描述 在一个 n×n\text{n} \times \text{n}n×n 个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上 ...

  7. 【线性规划与网络流 24题】已完成(3道题因为某些奇怪的原因被抛弃了QAQ)

    写在前面:SDOI2016 Round1滚粗后蒟蒻开始做网络流来自我拯救(2016-04-11再过几天就要考先修课,现在做网络流24题貌似没什么用←退役节奏) 做的题目将附上日期,见证我龟速刷题. 1 ...

  8. 【算法】【网络流24题】巨坑待填(成功TJ,有时间再填)

    ------------------------------------------------------------------------------------ 17/24 --------- ...

  9. 网络流基础&网络流24题

    网络最大流 dinic+当前弧优化. const int N=10007,M=100007,inf=1e9; int s,t,head[N],ver[M],edge[M],Next[M],tot=1, ...

随机推荐

  1. PAT甲级——A1047 Student List for Course

    Zhejiang University has 40,000 students and provides 2,500 courses. Now given the registered course ...

  2. MySql存储过程批量删除多个数据库中同名表中的指定字段

    1. 创建存储过程batchDeleteField:删除所有名称为"MyDB_"开头的数据库中的指定字段 -- ---------------------------- -- Pr ...

  3. host ngnix zull

    1.浏览器解析域名:www.baidu.com 2.由本地host解析得到IP:127.0.0.1 3.向IP传递请求,IP所在PC的Ngnix监听80端口. 4.IP所以PC收到请求后,nginx由 ...

  4. python3没有了xrange

    升级到python3的同学应该会注意到以前经常用的xrange没了! 是的,python3的range就是xrange.直接看效果!   Python 2.7.13 (v2.7.13:a06454b1 ...

  5. Tarjan求LCA(离线)

    基本思想 把要求的点对保存下来,在dfs时顺带求出来. 方法 将每个已经遍历的点指向它回溯的最高节点(遍历它的子树时指向自己),每遍历到一个点就处理它存在的询问如果另一个点已经遍历,则lca就是另一个 ...

  6. H5C3--background中cover,背景样式,提升响应区域+精灵图的使用

    一.cover的使用 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  7. JavaScript中this的指向2(转载)

    1. 每个函数都包含两个非继承而来的方法:call()方法和apply()方法. 2. 相同点:这两个方法的作用是一样的. 都是在特定的作用域中调用函数,等于设置函数体内this对象的值,以扩充函数赖 ...

  8. 汉诺塔III HDU - 2064

    汉诺塔III HDU - 2064   约19世纪末,在欧州的商店中出售一种智力玩具,在一块铜板上有三根杆,最左边的杆上自上而下.由小到大顺序串着由64个圆盘构成的塔.目的是将最左边杆上的盘全部移到右 ...

  9. Markdown图片

  10. Django高级实战 开发企业级问答网站

    Django高级实战 开发企业级问答网站 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的 ...