CF 453C. Little Pony and Summer Sun Celebration

构造题。

题目大意,给定一个无向图,每个点必须被指定的奇数或者偶数次,求一条满足条件的路径(长度不超\(4n\)).没有输出-1

首先我们应该判断掉-1的情况

图不连通且所有的奇数点不在同一个联通块内

发现只有上述情况可以

为什么

我们发现图不连通但所有的奇数点在同一个联通块内和图连通在本质上是一种情况.

我们在这里就只考虑图连通该怎么办.

首先,我们对于这张图求出他任意一个生成树

之后我们进行dfs,在dfs再次回到\(x\)点时(即我们已经处理玩了\(x\)的所有子树),我们就要求他合法.但是,万一他不合法怎么办?

很简单,我们就利用他的父亲.即\(x->f->x\)这样的话,虽然改变了\(f\),但是我们完成了将\(x\)的子树全部合法的任务

其他的所有点都以此类推

但是,万一我们求完整棵树,发现根不合法怎么办?

不慌,我们先随便找到\(root\)的一个儿子,记为\(s\)

那么直接\(root->s-root->s\)即可(注意我们此时在\(root\),结束在\(s\))

发现\(root\)变了,但是\(s\)经过了两次,相当于没改变,由上可知,肯定合法.

至于\(4n\)的限制

我们发现每个点最多下1步,上1步,来回判不合法2步.但是有叶子的存在,答案是小于\(4n\)的

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cctype>
#include<vector>
using namespace std;
const int N = 1e5 + 3;
int tot = 1;
int n,m;
struct edhe{
int to;
int nxt;
}e[N << 1];
int head[N];
int s[N];
bool vis[N];
int now[N];
int size,num1,root;
vector <int> G[N];
vector <int> ans;
inline int read(){
int v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
inline void add(int x,int y){
e[++tot].to = y;
e[tot].nxt = head[x];
head[x] = tot;
}
inline void dfs(int x){
vis[x] = 1;
size++;num1 += (s[x] == 1);
for(int i = head[x];i;i = e[i].nxt){
int y = e[i].to;
if(!vis[y]) {G[x].push_back(y);dfs(y);}
}
}
inline void dfs2(int x,int f){
ans.push_back(x);
now[x] ^= 1;
for(int i = 0;i < (int)G[x].size();++i){
int y = G[x][i];
dfs2(y,x);
ans.push_back(x);
now[x] ^= 1;
}
if(now[x] != s[x] && x != root){
ans.push_back(f);
ans.push_back(x);
// ans.push_back(f);
now[x] ^= 1;
now[f] ^= 1;
}
if(now[x] != s[x] && x == root){
ans.push_back(G[x][0]);
ans.push_back(root);
ans.push_back(G[x][0]);
now[x] ^= 1;
}
return ;
}
int main(){
n = read(),m = read();
for(int i = 1;i <= m;++i){
int x = read(),y = read();
add(x,y);add(y,x);
}
for(int i = 1;i <= n;++i) scanf("%d",&s[i]);
int g = 0;
for(int i = 1;i <= n;++i) if(s[i] == 1) g++;
if(g == 0){puts("0");return 0;}
if(m == 0){
if(g != 1){puts("-1");return 0;}
else{
for(int i = 1;i <= n;++i) if(s[i] == 1) {printf("1\n%d\n",i);return 0;}
}
}
for(int i = 1;i <= n;++i){
if(!vis[i]){
size = 0,num1 = 0;
dfs(i);
if(num1) root = i;
}
}
if(size != n && num1 != g){puts("-1");return 0;}
dfs2(root,0);
printf("%d\n",ans.size());
for(int i = 0;i < (int)ans.size();++i) printf("%d ",ans[i]);
return 0;
}

CF 453C. Little Pony and Summer Sun Celebration的更多相关文章

  1. codeforces 453C Little Pony and Summer Sun Celebration

    codeforces 453C Little Pony and Summer Sun Celebration 这道题很有意思,虽然网上题解很多了,但是我还是想存档一下我的理解. 题意可以这样转换:初始 ...

  2. CF453C Little Pony and Summer Sun Celebration (DFS)

    http://codeforces.com/contest/456  CF454E Codeforces Round #259 (Div. 1) C Codeforces Round #259 (Di ...

  3. CF453C Little Pony and Summer Sun Celebration(构造、贪心(?))

    CF453C Little Pony and Summer Sun Celebration 题解 这道题要求输出任意解,并且路径长度不超过4n就行,所以给了我们乱搞构造的机会. 我这里给出一种构造思路 ...

  4. codeforces 454 E. Little Pony and Summer Sun Celebration(构造+思维)

    题目链接:http://codeforces.com/contest/454/problem/E 题意:给出n个点和m条边,要求每一个点要走指定的奇数次或者是偶数次. 构造出一种走法. 题解:可能一开 ...

  5. Codeforces 454E. Little Pony and Summer Sun Celebration

    题意:给n个点m条边的无向图,并给出每个点的访问次数奇偶,求构造一条满足条件的路径(点和边都可以走). 解法:这道题还蛮有意思的.首先我们可以发现在一棵树上每个儿子的访问次数的奇偶是可以被它的父亲控制 ...

  6. CF453C Little Pony and Summer Sun Celebration

    如果一个点需要经过奇数次我们就称其为奇点,偶数次称其为偶点. 考虑不合法的情况,有任意两个奇点不连通(自己想想为什么). 那么需要处理的部分就是包含奇点的唯一一个连通块.先随意撸出一棵生成树,然后正常 ...

  7. CF453C-Little Pony and Summer Sun Celebration【构造】

    正题 题目链接:https://www.luogu.com.cn/problem/CF453C 题目大意 \(n\)个点\(m\)条边的一张无向图,每个节点有一个\(w_i\)表示该点需要经过奇数/偶 ...

  8. [CF453C] Little Poney and Summer Sun Celebration (思维)

    [CF453C] Little Poney and Summer Sun Celebration (思维) 题面 给出一张N个点M条边的无向图,有些点要求经过奇数次,有些点要求经过偶数次,要求寻找一条 ...

  9. CF 435B Little Pony and Harmony Chest

    Little Pony and Harmony Chest 题解: 因为 1 <= ai <= 30 所以  1 <= bi <= 58, 因为 59 和 1 等效, 所以不需 ...

随机推荐

  1. Spark in action on Kubernetes - Spark Operator的原理解析

    前言 在上篇文章中,向大家介绍了如何使用Spark Operator在kubernetes集群上面提交一个计算作业.今天我们会继续使用上篇文章中搭建的Playground进行调试与解析,帮助大家更深入 ...

  2. Data Lake Analytics中OSS LOCATION的使用说明

    前言 Data Lake Analytic(后文简称 DLA)可以帮助用户通过标准的SQL语句直接对存储在OSS.TableStore上的数据进行查询分析. 在查询前,用户需要根据数据文件的格式和内容 ...

  3. String字符串的比较 Day15

    package com.sxt.review; /* * String字符串的比较 * ==和equals() * 总结:比较String内容时用equals()方法 */ public class ...

  4. Java练习 SDUT-2444_正方形

    正方形 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 给出四个点,判断这四个点能否构成一个正方形. Input 输入的 ...

  5. 应用node-webkit(NWJS)把BS架构的网址封装成桌面应用

    一.目的 给WEB应用的用户提供一款同一的浏览器,访问固定网址,封装一些常用插件(如flash插件等) 二.步骤 1.下载node-webkit,官方网址https://nwjs.io/ 2.解压下载 ...

  6. CENTOS7安装R语言环境

    CENTOS7安装R语言环境 yum install texinfo.x86_64 yum install texlive.x86_64 cd /opt wget https://mirrors.tu ...

  7. huyingsakai的Python学习day1:计算机硬件

    1.python是什么?Python是一门编程语言 2.什么是编程语言?(*****)程序员和计算机沟通交流的介质 3.什么是编程?(*****)编程就是程序员想把内心表达的方法用某种计算机语言思维表 ...

  8. 使用DataX同步MaxCompute数据到TableStore(原OTS)优化指南

    概述 现在越来越多的技术架构下会组合使用MaxCompute和TableStore,用MaxCompute作大数据分析,计算的结果会导出到TableStore提供在线访问.MaxCompute提供海量 ...

  9. linux内核分析笔记----中断和中断处理程序

    中断还是中断,我讲了很多次的中断了,今天还是要讲中断,为啥呢?因为在操作系统中,中断是必须要讲的.. 那么什么叫中断呢, 中断还是打断,这样一说你就不明白了.唉,中断还真是有点像打断.我们知道linu ...

  10. JQuery完整验证&密码的显示与隐藏&验证码

    HTML <link href="bootstrap.css" rel="stylesheet"> <link href="gloa ...