CF 453C. Little Pony and Summer Sun Celebration

构造题。

题目大意,给定一个无向图,每个点必须被指定的奇数或者偶数次,求一条满足条件的路径(长度不超\(4n\)).没有输出-1

首先我们应该判断掉-1的情况

图不连通且所有的奇数点不在同一个联通块内

发现只有上述情况可以

为什么

我们发现图不连通但所有的奇数点在同一个联通块内和图连通在本质上是一种情况.

我们在这里就只考虑图连通该怎么办.

首先,我们对于这张图求出他任意一个生成树

之后我们进行dfs,在dfs再次回到\(x\)点时(即我们已经处理玩了\(x\)的所有子树),我们就要求他合法.但是,万一他不合法怎么办?

很简单,我们就利用他的父亲.即\(x->f->x\)这样的话,虽然改变了\(f\),但是我们完成了将\(x\)的子树全部合法的任务

其他的所有点都以此类推

但是,万一我们求完整棵树,发现根不合法怎么办?

不慌,我们先随便找到\(root\)的一个儿子,记为\(s\)

那么直接\(root->s-root->s\)即可(注意我们此时在\(root\),结束在\(s\))

发现\(root\)变了,但是\(s\)经过了两次,相当于没改变,由上可知,肯定合法.

至于\(4n\)的限制

我们发现每个点最多下1步,上1步,来回判不合法2步.但是有叶子的存在,答案是小于\(4n\)的

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cctype>
#include<vector>
using namespace std;
const int N = 1e5 + 3;
int tot = 1;
int n,m;
struct edhe{
int to;
int nxt;
}e[N << 1];
int head[N];
int s[N];
bool vis[N];
int now[N];
int size,num1,root;
vector <int> G[N];
vector <int> ans;
inline int read(){
int v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
inline void add(int x,int y){
e[++tot].to = y;
e[tot].nxt = head[x];
head[x] = tot;
}
inline void dfs(int x){
vis[x] = 1;
size++;num1 += (s[x] == 1);
for(int i = head[x];i;i = e[i].nxt){
int y = e[i].to;
if(!vis[y]) {G[x].push_back(y);dfs(y);}
}
}
inline void dfs2(int x,int f){
ans.push_back(x);
now[x] ^= 1;
for(int i = 0;i < (int)G[x].size();++i){
int y = G[x][i];
dfs2(y,x);
ans.push_back(x);
now[x] ^= 1;
}
if(now[x] != s[x] && x != root){
ans.push_back(f);
ans.push_back(x);
// ans.push_back(f);
now[x] ^= 1;
now[f] ^= 1;
}
if(now[x] != s[x] && x == root){
ans.push_back(G[x][0]);
ans.push_back(root);
ans.push_back(G[x][0]);
now[x] ^= 1;
}
return ;
}
int main(){
n = read(),m = read();
for(int i = 1;i <= m;++i){
int x = read(),y = read();
add(x,y);add(y,x);
}
for(int i = 1;i <= n;++i) scanf("%d",&s[i]);
int g = 0;
for(int i = 1;i <= n;++i) if(s[i] == 1) g++;
if(g == 0){puts("0");return 0;}
if(m == 0){
if(g != 1){puts("-1");return 0;}
else{
for(int i = 1;i <= n;++i) if(s[i] == 1) {printf("1\n%d\n",i);return 0;}
}
}
for(int i = 1;i <= n;++i){
if(!vis[i]){
size = 0,num1 = 0;
dfs(i);
if(num1) root = i;
}
}
if(size != n && num1 != g){puts("-1");return 0;}
dfs2(root,0);
printf("%d\n",ans.size());
for(int i = 0;i < (int)ans.size();++i) printf("%d ",ans[i]);
return 0;
}

CF 453C. Little Pony and Summer Sun Celebration的更多相关文章

  1. codeforces 453C Little Pony and Summer Sun Celebration

    codeforces 453C Little Pony and Summer Sun Celebration 这道题很有意思,虽然网上题解很多了,但是我还是想存档一下我的理解. 题意可以这样转换:初始 ...

  2. CF453C Little Pony and Summer Sun Celebration (DFS)

    http://codeforces.com/contest/456  CF454E Codeforces Round #259 (Div. 1) C Codeforces Round #259 (Di ...

  3. CF453C Little Pony and Summer Sun Celebration(构造、贪心(?))

    CF453C Little Pony and Summer Sun Celebration 题解 这道题要求输出任意解,并且路径长度不超过4n就行,所以给了我们乱搞构造的机会. 我这里给出一种构造思路 ...

  4. codeforces 454 E. Little Pony and Summer Sun Celebration(构造+思维)

    题目链接:http://codeforces.com/contest/454/problem/E 题意:给出n个点和m条边,要求每一个点要走指定的奇数次或者是偶数次. 构造出一种走法. 题解:可能一开 ...

  5. Codeforces 454E. Little Pony and Summer Sun Celebration

    题意:给n个点m条边的无向图,并给出每个点的访问次数奇偶,求构造一条满足条件的路径(点和边都可以走). 解法:这道题还蛮有意思的.首先我们可以发现在一棵树上每个儿子的访问次数的奇偶是可以被它的父亲控制 ...

  6. CF453C Little Pony and Summer Sun Celebration

    如果一个点需要经过奇数次我们就称其为奇点,偶数次称其为偶点. 考虑不合法的情况,有任意两个奇点不连通(自己想想为什么). 那么需要处理的部分就是包含奇点的唯一一个连通块.先随意撸出一棵生成树,然后正常 ...

  7. CF453C-Little Pony and Summer Sun Celebration【构造】

    正题 题目链接:https://www.luogu.com.cn/problem/CF453C 题目大意 \(n\)个点\(m\)条边的一张无向图,每个节点有一个\(w_i\)表示该点需要经过奇数/偶 ...

  8. [CF453C] Little Poney and Summer Sun Celebration (思维)

    [CF453C] Little Poney and Summer Sun Celebration (思维) 题面 给出一张N个点M条边的无向图,有些点要求经过奇数次,有些点要求经过偶数次,要求寻找一条 ...

  9. CF 435B Little Pony and Harmony Chest

    Little Pony and Harmony Chest 题解: 因为 1 <= ai <= 30 所以  1 <= bi <= 58, 因为 59 和 1 等效, 所以不需 ...

随机推荐

  1. iOS将image转90,180,270度的方法

    http://blog.sina.com.cn/s/blog_6602ffbc0101ckx3.html 这里要分享的是将image旋转,而不是将imageView旋转,原理就是使用quartz2D来 ...

  2. day40-Spring 02-事务的回顾

  3. PHPCMS快速建站系列之pc:get标签的应用

    GET标签使用方式如下: {pc:get sql="SELECT * FROM phpcms_member" cache="3600" page="$ ...

  4. python系列之(3)爬取豆瓣图书数据

    上次介绍了beautifulsoup的使用,那就来进行运用下吧.本篇将主要介绍通过爬取豆瓣图书的信息,存储到sqlite数据库进行分析. 1.sqlite SQLite是一个进程内的库,实现了自给自足 ...

  5. C++ 标准库 permutation

    首先,permutation指的是对元素的重排,比方a , b , c 三个元素的全部的重排为    abc, acb, bac,bca,cab,cba 总共 3!  = 6 中情况,可是怎样声称这六 ...

  6. inflate用一个XML源填充view. LayoutInflater

    java.lang.Object     android.view.LayoutInflater This class is used to instantiate layout XML file i ...

  7. Java面向对象----继承概念,super关键字

    继承概念: 继承需要符合的关系  is-a  , 父类通用更抽象,子类更特殊更具体 类之间的关系 继承体现 组合体现 实现接口体现 继承的意义 代码重用 体现不同抽象层次 extends关键字 Sup ...

  8. Java练习 SDUT-1132_斐波那契数列

    C/C++经典程序训练2---斐波那契数列 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 编写计算斐波那契(Fibon ...

  9. sublime text 3创建新文件插件-AdvanceNewFile

    这里要记录sublime text 3 在创建新文件时安装的插件–AdvanceNewFile ST本来自带的创建新文件的快捷键是ctrl+n.但是用户需要保存时才可修改名称以及文件路径.但是安装完A ...

  10. [C#] WebClient性能优化

    WebClient缺省是为了安全和方便,不是为了性能.所以,当你打算做压力测试的时候,就会发现WebClient很慢. WebClient性能很差,主要原因有: 1.它缺省会使用IE的代理设置,而IE ...