题意

问有多少个长度为\(N\)且字符集大小为\(K\)的字符串可以通过回文串旋转 (把第一个字符移到最后)若干次得到。\(K\le N≤10^{18}\)

做法

ARC64F的加强版

设\(h(d)=d~is~odd?d:\frac{d}{2}\),\(f(d)\)为最小周期为\(i\)的回文串
有\(g(d)=K^{\left\lceil\frac{d}{2}\right\rceil}=\sum\limits_{i|d}f(i)\)
反演一下有:\(f(n)=\sum\limits_{d|n}\mu(d)g(\frac{n}{d})\)
有:\[\begin{aligned}\\
Ans&=\sum\limits_{d|n}h(d)\sum\limits_{p|d}\mu(p)g(\frac{d}{p})\\
&=\sum\limits_{p|n}g(p)\sum\limits_{d|\frac{n}{p}}h(dp)\mu(d) \\
\end{aligned}\]

在大多数情况下有,\(h(dp)=dh(p)\)
在不满足条件:\(d~is~even,p~is~odd\)时,容易得出\(\frac{n}{p}~is~even,\sum\limits_{d|\frac{n}{p}}h(dp)\mu(d)=0\),故在不考虑这部分的情况下:\[\begin{aligned}\\
\sum\limits_{d|\frac{n}{p}}h(dp)\mu(d)&=h(p)\sum\limits_{d|\frac{n}{p}}\mu(d)d \\
&=h(p)\prod\limits_{i=1}^k (1-p_i)~~~(\frac{n}{p}=\prod\limits_{i=1}^k p_i^{deg_i})\\
\end{aligned}\]

用Pollard-Rho分解质因数然后dfs即可
\(O(Pollard-Rho(N)+\sigma_0(N)logN)\)

[SDOI2018]反回文串的更多相关文章

  1. [BZOJ5330][SDOI2018]反回文串

    luogu bzoj sol 枚举一个长度为\(n\)为回文串,它的所有循环位移都可以产生贡献. 但是这样算重了.重复的地方在于可能多个回文串循环同构,或者可能有的回文串经过小于\(n\)次循环位移后 ...

  2. BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...

  3. [BZOJ 5330][SDOI2018] 反回文串

    传送门 怎么说呢,一道不可多得的反演题吧,具体解释之后再补 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) ...

  4. 【SDOI2018】反回文串(【ARC064 F】Rotated Palindromes 加强版)

    题意 给你一个正整数 \(n\),求有多少字符集为 \(1\) 到 \(k\) 之间整数的字符串,使得该字符串可以由一个长度为 \(n\) 的回文串循环移位得到. ARC原题 \(100\%\) 的数 ...

  5. 「SDOI 2018」反回文串

    题目大意: 求字符集大小为$k$长度为$n$的经循环移位后为回文串的数量. 题解: 这题是D1里最神的吧 考虑一个长度为$n$回文串,将其循环移位后所有的串都是满足要求的串. 但是显然这样计算会算重. ...

  6. [luogu4607]反回文串

    参考ARC064F 令$h(n)=\begin{cases}n(n为奇数)\\\frac{n}{2}(n为偶数)\end{cases}$,$f(n)$定义与ARC064F相同,答案即$\sum_{d| ...

  7. [LeetCode] Longest Palindrome 最长回文串

    Given a string which consists of lowercase or uppercase letters, find the length of the longest pali ...

  8. [LeetCode] Shortest Palindrome 最短回文串

    Given a string S, you are allowed to convert it to a palindrome by adding characters in front of it. ...

  9. [LeetCode] Palindrome Partitioning II 拆分回文串之二

    Given a string s, partition s such that every substring of the partition is a palindrome. Return the ...

随机推荐

  1. HDU-5902-GCD is Funny解题笔记

    Alex has invented a new game for fun. There are n integers at a board and he performs the following ...

  2. 痞子衡嵌入式:嵌入式里堆栈原理及其纯C实现

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家讲的是嵌入式里堆栈原理及其纯C实现. 今天给大家分享的这篇还是2016年之前痞子衡写的技术文档,花了点时间重新编排了一下格式.栈这种结构在嵌入式 ...

  3. qt creator源码全方面分析(2-7)

    目录 Completing Code 补全代码片段 编辑代码片段 添加和编辑片段 删除片段 重置片段 补全Nim代码 Completing Code 在编写代码时,Qt Creator建议使用属性,I ...

  4. ajax实现文本框的联想功能

    先写一个jsp通过ajax传值给servlet进行查询再传给对应的div进行显示. <%@ page language="java" contentType="te ...

  5. 本地开发环境伪装成SSL连接的实现

    本地ssl开发测试实现1,在外网服务器上使用测试域名和t.test.cn,用let's encrypt申请 证书并正常运行2,修改本地服务器host文件,将t.kennylee.vip指向127.0. ...

  6. php mySql常用的函数

    1.mysql_connect()-建立数据库连接 格式: resource mysql_connect([string hostname [:port] [:/path/to/socket] [, ...

  7. [Redis-CentOS7]Redis字符串操作(二)

    登录Redis # redis-cli 127.0.0.1:6379> 添加字符串 EX 超期时间60s 127.0.0.1:6379> set username 'leoshi' OK ...

  8. 【5min+】 设计模式的迷惑?Provider vs Factory

    系列介绍 [五分钟的dotnet]是一个利用您的碎片化时间来学习和丰富.net知识的博文系列.它所包含了.net体系中可能会涉及到的方方面面,比如C#的小细节,AspnetCore,微服务中的.net ...

  9. 用命令提示符运行简单的Java程序报错

    首先用记事本写一个最简单的Java代码,我把文件保存在桌面的HelloWorld文件夹中,这里将记事本的名称改为HelloWorld.java public class HelloWorld{ pub ...

  10. React中ref的使用

    直接获取DOM元素时使用的,一般情况下尽量不要使用ref