ural1018(树形dp)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662
题意:给一棵边有权值的二叉树,节点编号为1~n,1是根节点。求砍掉一些边,只保留q条边,这q条边构成的子树的根节点要求是1,求这颗子树的最大权值。
分析:1.dp[u][i]表示已以u为根节点的子树,保留了i个节点的最大权值。每条边的权值,把它看作是连接的两个节点中的儿子节点的权值。那么总共要保留m+1个节点。
所以有:dp[u][i]=max(dp[u][i],dp[v][k]+dp[u][i-k]+w).ans=dp[1][m+1].
2.dp[u][i]表示u为根节点的子树,保留了i个条边的最大权值。在以u点为根节点的子树中选择了k条边,那么u的儿子节点v代表的子树中至多选k-1条边,因为如果在v子树中选边,那么u到v的边必选。
所以有:dp[u][i]=max(dp[u][i],dp[u][i-k]+dp[v][k-1]+w).ans=dp[1][m].
方法1的代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 1000000007
#define inf 0x3f3f3f3f
#define N 110
#define clr(a) (memset(a,0,sizeof(a)))
using namespace std;
struct edge
{
int v,w,next;
edge(){}
edge(int v,int w,int next):v(v),w(w),next(next){}
}e[*N];
int head[N],dp[N][N],num[N],tot,n,m;
void addedge(int u,int v,int w)
{
e[tot]=edge(v,w,head[u]);
head[u]=tot++;
}
void dfs(int u,int fa)
{
num[u]=;
for(int i=head[u];~i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(v==fa)continue;
dfs(v,u);
num[u]+=num[v];
for(int j=num[u];j>=;j--)
for(int k=;k<j&&k<=num[v];k++)//注意这里k<j.因为子树根节点u点必选,在子树节点中至多选j-1个
dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[v][k]+w);
}
}
int main()
{
int u,v,w;
while(scanf("%d%d",&n,&m)>)
{
memset(head,-,sizeof(head));
clr(dp);tot=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
dfs(,-);
printf("%d\n",dp[][m+]);
}
}
方法2的代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 1000000007
#define inf 0x3f3f3f3f
#define N 110
#define clr(a) (memset(a,0,sizeof(a)))
using namespace std;
struct edge
{
int v,w,next;
edge(){}
edge(int v,int w,int next):v(v),w(w),next(next){}
}e[*N];
int head[N],dp[N][N],tot,n,m;
void addedge(int u,int v,int w)
{
e[tot]=edge(v,w,head[u]);
head[u]=tot++;
}
void dfs(int u,int fa)
{
for(int i=head[u];~i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(v==fa)continue;
dfs(v,u);
for(int j=m;j>=;j--)
for(int k=;k<=j;k++)
dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[v][k-]+w);
}
}
int main()
{
int u,v,w;
while(scanf("%d%d",&n,&m)>)
{
memset(head,-,sizeof(head));
clr(dp);tot=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
dfs(,-);
printf("%d\n",dp[][m]);
}
}
ural1018(树形dp)的更多相关文章
- URAL1018 Binary Apple Tree(树形DP)
题目大概说一棵n结点二叉苹果树,n-1个分支,每个分支各有苹果,1是根,要删掉若干个分支,保留q个分支,问最多能保留几个苹果. 挺简单的树形DP,因为是二叉树,都不需要树上背包什么的. dp[u][k ...
- 树形DP小结
树形DP1.简介:树是一种数据结构,因为树具有良好的子结构,而恰好DP是从最优子问题更新而来,那么在树上做DP操作就是从树的根节点开始深搜(也就是记忆化搜索),保存每一步的最优结果.tips:树的遍历 ...
- 树形 DP 总结
树形 DP 总结 本文转自:http://blog.csdn.net/angon823/article/details/52334548 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在“树 ...
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- POJ2342 树形dp
原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...
随机推荐
- MFC 关于对话框的注意点
1.对于模态对话框而言,单击确定以后对话框窗口对象即被销毁了,而对于非模态对话框来说,对话框的对象并未销毁而是隐藏起来(EndDialog函数),因此对于非模态对话框,必须重写OnOK这个虚函数,并在 ...
- 挑战一下吧!C#测试开发工程师英语面试题
1. Given a rectangular (cuboidal for the puritans) cake with a rectangular piece removed (any size o ...
- POI读取公式的值
excel中的数据: package poi; import java.io.FileInputStream; import java.io.IOException; import java.io.I ...
- activemq java版本要求
<pre name="code" class="html">activemq: redis01:/root# cp apache-activemq- ...
- "Invalid username/password or database/scan listener not up"
文档 ID … 11.2 RAC DBconsole Creation Fails With Error: "Invalid username/password or ...
- java(样品集成框架spring、spring mvc、spring data jpa、hibernate)
这是你自己的参考springside集成框架的开源项目.主要的整合spring.spring mvc.spring data jpa.hibernate几个框架,对于这些框架中仍然感觉更舒适sprin ...
- Swift调用Objective-C编写的代码(颜色选择器KKColorListPicker调用)
在Swift项目中,我们可以导入任意用Objective-C写的框架,代码库等.下面以Swift调用Objective-C编写的颜色选择器KKColorListPicker为例. 效果图如下: ...
- MyBATIS使用CRUD
MyEclipse不提供自己主动生成,这里提供mybatis文件包和开发文档 http://download.csdn.net/detail/u010026901/7489319 自己建立配置文件, ...
- blender资源
blender资源 只能发帖不能更改的百度贴吧贴. http://tieba.baidu.com/f?kw=blender blendercn youku视频专辑: http://i.youku.co ...
- Java Web Services (0) - Overview
前言第1章 Web服务快速入门 1.1 Web服务杂项 1.2 Web服务有什么好处 1.3 Web服务和面向服务的架构 1.4 Web服务简史 1.4.1 从DCE/RPC到XML-RPC 1.4. ...