函数求值

题意:

    定义函数g(n)为n最大的奇数因子。求f(n)=g(1)+g(2)+g(3)+…+g(n)。1<=n<=10^8;

思路:

首先明白暴力没法过。问题是如何求解,二分。知道奇数的最大因子是他本身,并且小于等于n的奇数的和很容易就可以求出来(等差数列)。那么剩下的偶数除以2得到n`,然后去求小于等于n`的奇数,最后得解。
<long long>
#include<cstdio>
typedef long long LL;
int main ()
{
LL n,ans;
while (~scanf("%lld",&n))
{
ans=0;
for(;n>=1;n/=2)
{
if(n%2==0)
ans+=n*n/4;
else
ans+=(n+1)*(n+1)/4;
}
printf("%lld\n",ans);
}
return 0;
}

函数求值一<找规律>的更多相关文章

  1. 函数求值(swust oj0274)

    函数求值(0274) Time limit(ms): 1000 Memory limit(kb): 65535 Submission: 1767 Accepted: 324 Accepted 14级卓 ...

  2. GMA Round 1 函数求值

    传送门 函数求值 设函数$f(x)=x^{2018}+a_{2017}*x^{2017}+a_{2016}*x^{2016}+...+a_{2}*x^2+a_{1}*x+a_{0}$,其中$a_{0} ...

  3. 多项式函数插值:多项式形式函数求值的Horner嵌套算法

    设代数式序列 $q_1(t), q_2(t), ..., q_{n-1}(t)$ ,由它们生成的多项式形式的表达式(不一定是多项式): $$p(t)=x_1+x_2q_1(t)+...x_nq_1(t ...

  4. YTU 2452: 麦克劳林用于函数求值

    2452: 麦克劳林用于函数求值 时间限制: 1 Sec  内存限制: 128 MB 提交: 18  解决: 12 题目描述 泰勒公式是一个用函数在某点的信息描述其附近取值的公式.如果函数足够光滑的话 ...

  5. [System.OutOfMemoryException] {函数求值已禁用,因为出现内存不足异常。

    [System.OutOfMemoryException] {函数求值已禁用,因为出现内存不足异常. StringBuilder 赋值的时候超过内存的大小,要即时去清空文本的值. 也可能是DataSe ...

  6. Educational Codeforces Round 68 (Rated for Div. 2)D(SG函数打表,找规律)

    #include<bits/stdc++.h>using namespace std;int sg[1007];int main(){ int t; cin>>t; while ...

  7. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  8. ODAC访问oracle时,提示:由于以前的函数求值超时,函数求值被禁用,必须继续执行才能正常返回

    这是因为调试时会自动对Local/Watch等窗口里面(或鼠标停留所在)的变量求值,为了防止用户写的程序错误(比如死循环),系统有一个超时限制,如果某个属性的get中做了很复杂的操作(而不是简单地返回 ...

  9. 基于visual Studio2013解决C语言竞赛题之0301函数求值

     题目 解决代码及点评 #include <stdio.h> #include <stdlib.h> #include <math.h> void main() ...

随机推荐

  1. hdu_5927_Auxiliary Set(xjb搞)

    题目链接:hdu_5927_Auxiliary Set 题意: 给一棵n个节点的树,最开始全部都是重点,现在有q个询问,每次给你一些轻点,并叫你输出整棵树的重点数量, 轻点可能会变为重点,如果这个轻点 ...

  2. HttpModule的基本概念

    注:本文为个人学习摘录,原文地址:http://www.cnblogs.com/stwyhm/archive/2006/08/09/471765.html HttpModule是如何工作的 当一个HT ...

  3. digitalocean vpn安装配置教程

    digitalocean是美国一家专业的vps提供商,优势是性价比高,最低配置512MB内存vps每月只要5美元,导致大陆用户疯狂涌入.关于digitalocean申请方法.digitalocean速 ...

  4. Python 之 geturl 学习

    geturl为response对象的方法,由于有时候得到的网站url并不是真正的初始url而是通过重定向获得的,所以可以通过geturl方法获取真实的url.测试代码如下: from urllib2 ...

  5. MFC下调试日志的打印

    最近项目出现点小Bug,需要调试跟踪代码,于是乎写了份打印日志的代码. CLogFile.h文件 #if !defined(AFX_LOGFILE_H__288388CA_9A3E_4F3D_A2B8 ...

  6. for计算100以内的偶数和

    #include "stdio.h" void main() { ,sum=; ;d++) { ==) { sum=sum+d; } }printf("100以内所有偶数 ...

  7. java线程数据交换Exchanger

    两个线程都等到交换函数才能完成交换数据操作,代码如下: package threadLock; import java.util.Random; import java.util.concurrent ...

  8. MFC利用ADO建立access数据源 ---包括访问带access密码与不带access密码两种方式)

    void CDlg_login::OnButton1() { CString c_user,c_password;m_user1.GetWindowText(c_user);m_password1.G ...

  9. 购物车(Shopping cart) —— B2C网站核心产品设计 (二)

    购物车是做什么的? 我们先来看一下现实超市中的购物车,一个带四个轱辘的铁筐子,客人推来推去,看到什么东西喜欢,就扔进去,觉得东西差不多了,就推到收银台. 那B2C网站中的购物车又是一个什么东西呢? 从 ...

  10. 超赞!聊聊WEB APP、HYBRID APP与NATIVE APP的设计差异

    编者按:这3类主流应用你都了解吗?设计师除了要有视觉功夫,对不同形式的APP也应当了然于胸,今天百度的同学写了一篇非常全面的总结,帮你迅速搞定3类主流APP的设计方法,附带一大波避雷针,带你巧妙跳过A ...