HDU - 2879HeHe

  题意:He[N]为[0,N−1]范围内有多少个数满足式子x2≡x (mod N),求HeHe[N]=He[1]×……×He[N]

  我是通过打表发现的he[x]=2k,k为x是质因子个数,不过这是可以通过积性函数证明的。

  关于积性函数的定义:

对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时,f(ab)=f(a)f(b),在数论上就称它为积性函数。若对于某积性函数 f(n) ,就算a, b不互质,也有f(ab)=f(a)f(b),则称它为完全积性的。

  引用证明,HDU 2879 HeHe (素数+积性函数及证明)

  知道了,he[x]=2k之后,接下来求hehe[n]其实就是求2k1+k2+...kn,具体实现上,有好几种方法。

  普通的埃氏筛,对于每个数它的每个质因子就在指数贡献一个了1,所以我们可以先把质数筛出来,然后再看n范围内包含有多少个这个质数的倍数。

 #include<cstdio>
typedef long long ll;
const int N=;
bool nop[N]={false};
int pn,pri[N/];
void init()
{
pn=;
for(int i=;i<N;i++)
{
if(!nop[i])
{
pri[pn++]=i;
for(int j=i<<;j<N;j+=i)
nop[j]=true;
}
}
}
ll pow(int b,int mod)
{
ll ans=,a=2ll;
while(b)
{
if(b&)
ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=;
}
return ans%mod;
}
int main()
{
init();
int t,n,m;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
int sum=;
for(int i=;i<pn&&pri[i]<=n;i++)
sum+=n/pri[i];
printf("%lld\n",pow(sum,m));
}
return ;
}

埃氏筛

  第二个线性筛(欧拉筛),为什么欧拉筛是O(n),,可以看这个证明线性筛(欧拉筛)然后,前面有证明he是积性函数,所有我们就可以通过欧拉筛先把he预处理处理。

#include<cstdio>
typedef long long ll;
const int N=;
bool nop[N]={false};
int pn,pri[N/],he[N];
void init()
{
pn=;
for(int i=;i<N;i++)
{
if(!nop[i])
{
he[i]=;//he[i]=2^1,
pri[pn++]=i;
}
for(int j=;j<pn&&1ll*i*pri[j]<N;j++)
{
int temp=i*pri[j];
nop[temp]=true;
if(i%pri[j]==)
{
he[temp]=he[i];//temp的质因子数跟i相同
break;
}
he[temp]=he[i]+he[pri[j]];//f[a*b]=f[a]*fa[b],
//这里he保存的是指数,所以是+
}
}
}
ll pow(int b,int mod)
{
ll ans=,a=2ll;
while(b)
{
if(b&)
ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=;
}
return ans%mod;
}
int main()
{
init();
int t,n,m;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
int sum=;
for(int i=;i<=n;i++)
sum+=he[i];
printf("%lld\n",pow(sum,m));
}
return ;
}

欧拉筛

积性函数,线性筛入门 HDU - 2879的更多相关文章

  1. bzoj2693--莫比乌斯反演+积性函数线性筛

    推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和 ...

  2. [模板] 积性函数 && 线性筛

    积性函数 数论函数指的是定义在正整数集上的实或复函数. 积性函数指的是当 \((a,b)=1\) 时, 满足 \(f(a*b)=f(a)*f(b)\) 的数论函数. 完全积性函数指的是在任何情况下, ...

  3. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  4. BZOJ 2694: Lcm 莫比乌斯反演 + 积性函数 + 线性筛 + 卡常

    求 $\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)\mu(gcd(i,j))^2$   $\Rightarrow \sum_{d=1}^{n}\mu(d)^2\sum_{i ...

  5. 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记

    最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...

  6. Divisor counting [线性筛积性函数]

    Divisor counting 题目大意:定义f(n)表示整数n的约数个数.给出正整数n,求f(1)+f(2)+...+f(n)的值. 注释:1<=n<=1000,000 想法:我们再次 ...

  7. ACM-ICPC 2018 南京赛区网络预赛Sum,线性筛处理积性函数

    SUM 题意:f(n)是n可以拆成多少组n=a*b,a和b都是不包含平方因子的方案数目,对于a!=b,n=a*b和n=b*a算两种方案,求∑i=1nf(i) 首先我们可以知道,n=1时f(1)=1, ...

  8. 牛客小白月赛12C (线性筛积性函数)

    链接:https://ac.nowcoder.com/acm/contest/392/C来源:牛客网 题目描述 华华刚刚帮月月完成了作业.为了展示自己的学习水平之高超,华华还给月月出了一道类似的题: ...

  9. P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数

    LINK:简单题 以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西. 这里写一个实现比较精细了. 最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x| ...

随机推荐

  1. centos8自定义目录安装nginx

    1.安装工具和库 # PCRE是一个Perl库,包括 perl 兼容的正则表达式库.nginx 的 http 模块使用 pcre 来解析正则表达式 # zlib库提供了很多种压缩和解压缩的方式, ng ...

  2. 统计学习方法 | 感知机 | python实现

    感知机是二类分类的线性分类模型,利用随机梯度下降法对基于误分类的损失函数进行极小化. 书中算法可以将所有样本和系数向量写成增广向量的形式,并将所有负样本乘以-1,统一形式,方便计算. (1)训练数据集 ...

  3. Unable to find optional library: org.apache.http.legacy 错误

    在目录adt-bundle-windows-x86_64-20140702\sdk\platforms\android-20或者 C:\Users\Administrator\AppData\Loca ...

  4. .Net C# EF database first connectionstring

    <connectionStrings> <add name="CupCreditCheckDB" connectionString="metadata= ...

  5. oracle基本查询01

    /*数据库-----> 数据库实例----->表空间[逻辑单位]------>数据文件[物理单位] 通常情况下oracle数据库只会有一个实例ORCL 新建一个项目: MYSQL:创 ...

  6. Viola–Jones object detection framework--Rapid Object Detection using a Boosted Cascade of Simple Features中文翻译 及 matlab实现(见文末链接)

    ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001 Rapid Object Detection using a B ...

  7. Docker本地镜像发布到阿里云和从阿里云拉取镜像

    登录阿里云官网,找到容器镜像服务 进入镜像仓库,创建仓库 输入信息 选择本地仓库 这里我要将这个镜像提交到仓库 回到仓库列表,点击管理 docker login --username=cn丶moti ...

  8. NPOI 将excel转换为datatable或者将datatable转换为excel

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  9. SAP成都研究院李三郎:SCP Application Router简介

    今天的文章来自李贝宁(Ben),SAP成都研究院的资深程序猿和架构师. 作为成都研究院里同时精通Java, JavaScript和ABAP这三门编程语言的数位同事之一,Ben曾经先后担任了成都CRM ...

  10. 《设计模式之美》 <03>面向对象、设计原则、设计模式、编程规范、重构,这五者有何关系?

    面向对象 现在,主流的编程范式或者是编程风格有三种,它们分别是面向过程.面向对象和函数式编程.面向对象这种编程风格又是这其中最主流的.现在比较流行的编程语言大部分都是面向对象编程语言.大部分项目也都是 ...