题目背景

国王1带大家到了数字王国的中心:三角圣地。

题目描述

不是说三角形是最稳定的图形嘛,数字王国的中心便是由一个倒三角构成。这个倒三角的顶端有一排数字,分别是1~N。1~N可以交换位置。之后的每一行的数字都是上一行相邻两个数字相加得到的。这样下来,最底端就是一个比较大的数字啦!数字王国称这个数字为“基”。国王1希望“基”越大越好,可是每次都自己去做加法太繁琐了,他希望你能帮他通过编程计算出这个数的最大值。但是这个值可能很大,所以请你输出它mod 10007 的结果。

任务:给定N,求三角形1~N的基的最大值 再去 mod 10007。

输入格式

一个整数N

输出格式

一个整数,表示1~N构成的三角形的最大的“基”

输入输出样例

输入 #1复制

4
输出 #1复制

24
输入 #2复制

1125
输出 #2复制

700

说明/提示

数据:

20% 0<=N<=100

50% 0<=N<=3000

100% 0<=N<=1000000

样例解释:

1 3 4 2

4 7 6

11 13

24 是N=4的时候的最大值,当然还有别的构成形式。

PS:它叫做三角圣地,其实它就是个三角形~

本题数据已经更新,目前全部正确无误!

不要面向数据编程!

思想:比如样例4,:1 2 3 4

       1 3 4 2

        4  7  6

        11 13

         24

此时价值最大,可以发现,其实是满足组合数的关系:贡献分别为:

      1 3 3 1

  也就是n-1行,注意组合数从第0行开始,我一开始挂在这里了。

  可以用卢卡斯定理,线性求阶乘逆元。

  注意模数

线性求逆元:

#define mod 100007
for(int i=1;i<=mod-1;i++)inv[i]=(p-p/i)*inv[p%i]%mod;

 线性求阶乘逆元:

#define mod 100007
for(int i=1;i<=mod-1;i++)inv[i]=(p-p/i)*inv[p%i]%mod;
for(int i=1;i<=mod-1;i++)inv[i]=inv[i]*inv[i-1]%mod;

代码:

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;
const int N = 1000000;
const int p = 10007;
int inv[N],c[N],ans,n;
int read()
{
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void work()
{
c[0]=c[1]=inv[1]=inv[0]=1;
for(int i=2;i<=p-1;i++)c[i]=c[i-1]*i%p;
for(int i=2;i<=p-1;i++)inv[i]=(p-p/i)*inv[p%i]%p;
for(int i=1;i<=p-1;i++)inv[i]=inv[i-1]*inv[i]%p;
}
int C(int n,int m)
{
if(n<m)return 0;
if(n<p && m<p)
{
return c[n] *inv[m] %p * inv[n-m] %p;
}
return C(n/p,m/p)*C(n%p,m%p)%p;
}
signed main()
{
work();
n=read();
for(int i=1;i<=n;i++)
{
if(i%2==0)
{
ans += (C(n-1,n-i/2)%p*i%p);//自己代数可行
ans%=p;
while(ans<0) ans+=p;
}
else
{
ans += (C(n-1,(i+1)/2-1)%p*i%p)%p;//自己代数找,分奇偶
ans%=p;
while(ans<0) ans+=p;
}
}
printf("%lld\n",ans);
return 0;
}

  

-----yi-----lin

【luoguP2675】《瞿葩的数字游戏》T3-三角圣地的更多相关文章

  1. 【刷题】洛谷 P2675 《瞿葩的数字游戏》T3-三角圣地

    题目背景 国王1带大家到了数字王国的中心:三角圣地. 题目描述 不是说三角形是最稳定的图形嘛,数字王国的中心便是由一个倒三角构成.这个倒三角的顶端有一排数字,分别是1 ~ N.1 ~ N可以交换位置. ...

  2. 《瞿葩的数字游戏》T3-三角圣地(Lucas)

    题目背景 国王1带大家到了数字王国的中心:三角圣地. 题目描述 不是说三角形是最稳定的图形嘛,数字王国的中心便是由一个倒三角构成.这个倒三角的顶端有一排数字,分别是1~N.1~N可以交换位置.之后的每 ...

  3. LUOGU P2675 《瞿葩的数字游戏》T3-三角圣地

    题面 解题思路 手推可以得出,最后每个数字的贡献其实就是第n行杨辉三角数,然后直接卢卡斯直接算(今天才找到lucas定理时间复杂度是log n,log以模数为底).代码略麻烦,不想改了. 代码 #in ...

  4. P2675 《瞿葩的数字游戏》T3-三角圣地

    传送门 考虑最上面每个位置的数对答案的贡献 然后就很容易发现: 如果有n层,位置 i 的数对答案的贡献就是C( n-1,i ) 然后就有很显然的贪心做法: 越大的数放越中间,这样它的贡献就会尽可能的大 ...

  5. 题解 P2674 【《瞿葩的数字游戏》T2-多边形数】

    题目说了很清楚,此题找规律,那么就找规律. 我们观察数列. 令k表示数列的第k个数. 三角形数:1 3 6 10 15 两项相减:1 2 3 4 5 再次相减:1 1 1 1 1 四边形数:1 4 9 ...

  6. C语言猜数字游戏

    猜数字游戏,各式各样的实现方式,我这边提供一个实现方式,希望可以帮到新手. 老程序猿就不要看了,黑呵呵 源代码1 include stdio.h include stdlib.h include ti ...

  7. 不一样的猜数字游戏 — leetcode 375. Guess Number Higher or Lower II

    好久没切 leetcode 的题了,静下心来切了道,这道题比较有意思,和大家分享下. 我把它叫做 "不一样的猜数字游戏",我们先来看看传统的猜数字游戏,Guess Number H ...

  8. java 猜数字游戏

    作用:猜数字游戏.随机产生1个数字(1~10),大了.小了或者成功后给出提示. 语言:java 工具:eclipse 作者:潇洒鸿图 时间:2016.11.10 >>>>> ...

  9. 【原创Android游戏】--猜数字游戏Version 0.1

    想当年高中时经常和小伙伴在纸上或者黑板上或者学习机上玩猜数字的游戏,在当年那个手机等娱乐设备在我们那还不是很普遍的时候是很好的一个消遣的游戏,去年的时候便写了一个Android版的猜数字游戏,只是当时 ...

随机推荐

  1. Django-djangorestframework-渲染模块

    目录 渲染模块 渲染模块的效果 源码分析 如何自定义配置使用渲染类 自定义渲染模块 渲染模块 可以根据用户请求 URL 或 用户可接受的类型,筛选出合适的 渲染组件. reponse 数据 json ...

  2. Django-djangorestframework-请求模块-获取请求参数

    目录 请求模块 源码分析 正式使用 总结 请求模块 主要是分析 drf 二次封装后的 request 对象 以及怎么拿到请求传递过来的数据(url 拼接的数据,数据包传过来的数据) 源码分析 源码查看 ...

  3. 编写函数模拟strcpy()函数功能

    strcpy(字符数组1,字符串2) strcpy( )用于将字符串2复制到字符数组1中 /* strcpy(字符数组1,字符串2) strcpy( )用于将字符串2复制到字符数组1中 模拟strcp ...

  4. 怎样在页面关闭时发起HTTP请求

    比如有需求是要让页面关闭时, 在数据库中记录用户的一些数据或log日志. 这时就需要在用户关闭页面时发起HTTP请求. 做法是对window.onunload设置事件监听函数, 在函数内发起AJAX请 ...

  5. Scala学习二十一——隐式转换和隐式参数

    一.本章要点 隐式转换用于类型之间的转换 必须引入隐式转换,并确保它们可以以单个标识符的形式出现在当前作用域 隐式参数列表会要求指定类型的对象.它们可以从当前作用域中以单个标识符定义的隐式对象的获取, ...

  6. SpringBoot使用MongoDB异常问题

    一 环境介绍 SpringBoot1.5.13.RELEASE(本地) Spring Data MongoDB Java 8 MongoDB(青云) 二 问题描述 使用Studio3T或者Compas ...

  7. 使用 SQL的 for xml path来进行字符串拼接

    本篇主要讲怎么利用SQL的FOR XML PATH 参数来进行字符串拼接,FOR XML PATH的用法很简单,它会以xml文件的形式来返回数据. 我的讲解步骤: 1:构造初始数据 2:提出问题 3: ...

  8. Spring Cloud(十)高可用的分布式配置中心 Spring Cloud Config 中使用 Refresh

    上一篇文章讲了SpringCloudConfig 集成Git仓库,配和 Eureka 注册中心一起使用,但是我们会发现,修改了Git仓库的配置后,需要重启服务,才可以得到最新的配置,这一篇我们尝试使用 ...

  9. Delphi 线程的基本概念

  10. sklearn--回归

    一.线性回归 LinearRegression类就是我们平时所说的普通线性回归,它的损失函数如下所示: 对于这个损失函数,一般有梯度下降法和最小二乘法两种极小化损失函数的优化方法,而scikit-le ...