神经网络(NN)实现多分类-----Keras实现
IRIS数据集介绍
IRIS数据集(鸢尾花数据集),是一个经典的机器学习数据集,适合作为多分类问题的测试数据,它的下载地址为:http://archive.ics.uci.edu/ml/machine-learning-databases/iris/。
IRIS数据集是用来给鸢尾花做分类的数据集,一共150个样本,每个样本包含了花萼长度(sepal length in cm)、花萼宽度(sepal width in cm)、花瓣长度(petal length in cm)、花瓣宽度(petal width in cm)四个特征,将鸢尾花分为三类,分别为Iris Setosa,Iris Versicolour,Iris Virginica,每一类都有50个样本。
IRIS数据集具体如下(只展示部分数据,顺序已打乱):
读取数据集
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer # 读取CSV数据集,并拆分为训练集和测试集
# 该函数的传入参数为CSV_FILE_PATH: csv文件路径
def load_data(CSV_FILE_PATH):
IRIS = pd.read_csv(CSV_FILE_PATH)
target_var = 'class' # 目标变量
# 数据集的特征
features = list(IRIS.columns)
features.remove(target_var)
# 目标变量的类别
Class = IRIS[target_var].unique()
# 目标变量的类别字典
Class_dict = dict(zip(Class, range(len(Class))))
# 增加一列target, 将目标变量进行编码
IRIS['target'] = IRIS[target_var].apply(lambda x: Class_dict[x])
# 对目标变量进行0-1编码(One-hot Encoding)
lb = LabelBinarizer()
lb.fit(list(Class_dict.values()))
transformed_labels = lb.transform(IRIS['target'])
y_bin_labels = [] # 对多分类进行0-1编码的变量
for i in range(transformed_labels.shape[1]):
y_bin_labels.append('y' + str(i))
IRIS['y' + str(i)] = transformed_labels[:, i]
# 将数据集分为训练集和测试集
train_x, test_x, train_y, test_y = train_test_split(IRIS[features], IRIS[y_bin_labels], \
train_size=0.7, test_size=0.3, random_state=0)
return train_x, test_x, train_y, test_y, Class_dict
搭建DNN
接下来,笔者将展示如何利用Keras来搭建一个简单的深度神经网络(DNN)来解决这个多分类问题。我们要搭建的DNN的结构如下图所示:
我们搭建的DNN由输入层、隐藏层、输出层和softmax函数组成,其中输入层由4个神经元组成,对应IRIS数据集中的4个特征,作为输入向量,隐藏层有两层,每层分别有5和6个神经元,之后就是输出层,由3个神经元组成,对应IRIS数据集的目标变量的类别个数,最后,就是一个softmax函数,用于解决多分类问题而创建。
对应以上的DNN结构,用Keras来搭建的话,其Python代码如下:
import keras as K
# 2. 定义模型
init = K.initializers.glorot_uniform(seed=1)
simple_adam = K.optimizers.Adam()
model = K.models.Sequential()
model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))
model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))
model.add(K.layers.Dense(units=3, kernel_initializer=init, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=simple_adam, metrics=['accuracy'])
在这个模型中,我们选择的神经元激活函数为ReLU函数,损失函数为交叉熵(cross entropy),迭代的优化器(optimizer)选择Adam,最初各个层的连接权重(weights)和偏重(biases)是随机生成的。这样我们就讲这个DNN的模型定义完毕了。
训练及预测
OK,定义完模型后,我们需要对模型进行训练、评估及预测。对于模型训练,我们每次训练的批数为1,共迭代100次,代码如下(接以上代码):
# 3. 训练模型
b_size = 1
max_epochs = 100
print("Starting training ")
h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, shuffle=True, verbose=1)
print("Training finished \n")
为了对模型有个评估,感知模型的表现,需要输出该DNN模型的损失函数的值以及在测试集上的准确率,其Python代码如下(接以上代码):
# 4. 评估模型
eval = model.evaluate(test_x, test_y, verbose=0)
print("Evaluation on test data: loss = %0.6f accuracy = %0.2f%% \n" \
% (eval[0], eval[1] * 100) )
训练100次,输出的结果如下(中间部分的训练展示已忽略):
Starting training
Epoch 1/100 1/105 [..............................] - ETA: 17s - loss: 0.3679 - acc: 1.0000
42/105 [===========>..................] - ETA: 0s - loss: 1.8081 - acc: 0.3095
89/105 [========================>.....] - ETA: 0s - loss: 1.5068 - acc: 0.4270
105/105 [==============================] - 0s 3ms/step - loss: 1.4164 - acc: 0.4667
Epoch 2/100 1/105 [..............................] - ETA: 0s - loss: 0.4766 - acc: 1.0000
45/105 [===========>..................] - ETA: 0s - loss: 1.0813 - acc: 0.4889
93/105 [=========================>....] - ETA: 0s - loss: 1.0335 - acc: 0.4839
105/105 [==============================] - 0s 1ms/step - loss: 1.0144 - acc: 0.4857 ...... Epoch 99/100 1/105 [..............................] - ETA: 0s - loss: 0.0013 - acc: 1.0000
43/105 [===========>..................] - ETA: 0s - loss: 0.0447 - acc: 0.9767
84/105 [=======================>......] - ETA: 0s - loss: 0.0824 - acc: 0.9524
105/105 [==============================] - 0s 1ms/step - loss: 0.0711 - acc: 0.9619
Epoch 100/100 1/105 [..............................] - ETA: 0s - loss: 2.3032 - acc: 0.0000e+00
51/105 [=============>................] - ETA: 0s - loss: 0.1122 - acc: 0.9608
99/105 [===========================>..] - ETA: 0s - loss: 0.0755 - acc: 0.9798
105/105 [==============================] - 0s 1ms/step - loss: 0.0756 - acc: 0.9810
Training finished Evaluation on test data: loss = 0.094882 accuracy = 97.78%
可以看到,训练完100次后,在测试集上的准确率已达到97.78%,效果相当好。
最后是对新数据集进行预测,我们假设一朵鸢尾花的4个特征为6.1,3.1,5.1,1.1,我们想知道这个DNN模型会把它预测到哪一类,其Python代码如下:
import numpy as np
# 5. 使用模型进行预测
np.set_printoptions(precision=4)
unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32)
predicted = model.predict(unknown)
print("Using model to predict species for features: ")
print(unknown)
print("\nPredicted softmax vector is: ")
print(predicted)
species_dict = {v:k for k,v in Class_dict.items()}
print("\nPredicted species is: ")
print(species_dict[np.argmax(predicted)])
输出的结果如下:
Using model to predict species for features:
[[ 6.1 3.1 5.1 1.1]] Predicted softmax vector is:
[[ 2.0687e-07 9.7901e-01 2.0993e-02]] Predicted species is:
versicolor
如果我们仔细地比对IRIS数据集,就会发现,这个预测结果令人相当满意,这个鸢尾花样本的预测结果,以人类的眼光来看,也应当是versicolor。
最后,附上该DNN模型的完整Python代码:
# iris_keras_dnn.py
# Python 3.5.1, TensorFlow 1.6.0, Keras 2.1.5
# ========================================================
# 导入模块
import os
import numpy as np
import keras as K
import tensorflow as tf
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelBinarizer
os.environ['TF_CPP_MIN_LOG_LEVEL']='' # 读取CSV数据集,并拆分为训练集和测试集
# 该函数的传入参数为CSV_FILE_PATH: csv文件路径
def load_data(CSV_FILE_PATH):
IRIS = pd.read_csv(CSV_FILE_PATH)
target_var = 'class' # 目标变量
# 数据集的特征
features = list(IRIS.columns)
features.remove(target_var)
# 目标变量的类别
Class = IRIS[target_var].unique()
# 目标变量的类别字典
Class_dict = dict(zip(Class, range(len(Class))))
# 增加一列target, 将目标变量进行编码
IRIS['target'] = IRIS[target_var].apply(lambda x: Class_dict[x])
# 对目标变量进行0-1编码(One-hot Encoding)
lb = LabelBinarizer()
lb.fit(list(Class_dict.values()))
transformed_labels = lb.transform(IRIS['target'])
y_bin_labels = [] # 对多分类进行0-1编码的变量
for i in range(transformed_labels.shape[1]):
y_bin_labels.append('y' + str(i))
IRIS['y' + str(i)] = transformed_labels[:, i]
# 将数据集分为训练集和测试集
train_x, test_x, train_y, test_y = train_test_split(IRIS[features], IRIS[y_bin_labels], \
train_size=0.7, test_size=0.3, random_state=0)
return train_x, test_x, train_y, test_y, Class_dict def main(): # 0. 开始
print("\nIris dataset using Keras/TensorFlow ")
np.random.seed(4)
tf.set_random_seed(13) # 1. 读取CSV数据集
print("Loading Iris data into memory")
CSV_FILE_PATH = 'E://iris.csv'
train_x, test_x, train_y, test_y, Class_dict = load_data(CSV_FILE_PATH) # 2. 定义模型
init = K.initializers.glorot_uniform(seed=1)
simple_adam = K.optimizers.Adam()
model = K.models.Sequential()
model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))
model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))
model.add(K.layers.Dense(units=3, kernel_initializer=init, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer=simple_adam, metrics=['accuracy']) # 3. 训练模型
b_size = 1
max_epochs = 100
print("Starting training ")
h = model.fit(train_x, train_y, batch_size=b_size, epochs=max_epochs, shuffle=True, verbose=1)
print("Training finished \n") # 4. 评估模型
eval = model.evaluate(test_x, test_y, verbose=0)
print("Evaluation on test data: loss = %0.6f accuracy = %0.2f%% \n" \
% (eval[0], eval[1] * 100) ) # 5. 使用模型进行预测
np.set_printoptions(precision=4)
unknown = np.array([[6.1, 3.1, 5.1, 1.1]], dtype=np.float32)
predicted = model.predict(unknown)
print("Using model to predict species for features: ")
print(unknown)
print("\nPredicted softmax vector is: ")
print(predicted)
species_dict = {v:k for k,v in Class_dict.items()}
print("\nPredicted species is: ")
print(species_dict[np.argmax(predicted)]) main()
链接:https://www.jianshu.com/p/1d88a6ed707e
来源:简书
神经网络(NN)实现多分类-----Keras实现的更多相关文章
- 用pytorch1.0搭建简单的神经网络:进行多分类分析
用pytorch1.0搭建简单的神经网络:进行多分类分析 import torch import torch.nn.functional as F # 包含激励函数 import matplotlib ...
- LSTM 文本情感分析/序列分类 Keras
LSTM 文本情感分析/序列分类 Keras 请参考 http://spaces.ac.cn/archives/3414/ neg.xls是这样的 pos.xls是这样的neg=pd.read_e ...
- Text-CNN-文本分类-keras
Text CNN 1. 简介 TextCNN 是利用卷积神经网络对文本进行分类的算法,由 Yoon Kim 在 "Convolutional Neural Networks for Sent ...
- 利用LM神经网络和决策树去分类
# -*- coding: utf-8 -*- import pandas as pd from scipy.interpolate import lagrange from matplotlib i ...
- 神经网络NN
神经网络基本模型: 1.前向神经网络:无圈的有向图N=(V,E,W),其中,V为神经元集合,E为连结权值集合,W为每一连结赋予一实值的权重. 神经元集V可以被分成无接受域的输入结点集V1,无投射域的输 ...
- tensorflow学习之(十)使用卷积神经网络(CNN)分类手写数字0-9
#卷积神经网络cnn import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #数据包,如 ...
- 使用MXNet远程编写卷积神经网络用于多标签分类
最近试试深度学习能做点什么事情.MXNet是一个与Tensorflow类似的开源深度学习框架,在GPU显存利用率上效率高,比起Tensorflow显著节约显存,并且天生支持分布式深度学习,单机多卡.多 ...
- 【机器学习】使用CNN神经网络实现对图片分类识别及模型转换
仅做记录,后面慢慢整理 训练函数: from skimage import io, transform # skimage模块下的io transform(图像的形变与缩放)模块 import glo ...
- Tensorflow学习教程------普通神经网络对mnist数据集分类
首先是不含隐层的神经网络, 输入层是784个神经元 输出层是10个神经元 代码如下 #coding:utf-8 import tensorflow as tf from tensorflow.exam ...
随机推荐
- 数组的新方法 forEach some filter findIndex
forEach some filter findIndex这些都属于数组的新方法,都会对数组中的每一项,进行遍历,执行相关的操作: 只不过在循环的时候有些不一样 参考资料:https://wan ...
- VSCode 的PHP常用插件及安装
一.在程序中打断点调试:PHP Debug 二.高级自动完成和重构支持(代码智能提示):PHP IntelliSense 配置: "php.suggest.basic": fals ...
- 4、获取Class中的构造函数
4.获取Class中的构造函数 4.1 早期创建对象 早期创建对象,先根据被new的类的名称找寻该类的字节码文件,并加载进内存,并创建该字节码文件对象,并接着创建该接文件的对应的Person对象 co ...
- Educational Codeforces Round 39 (Rated for Div. 2) 946E E. Largest Beautiful Number
题: OvO http://codeforces.com/contest/946/problem/E CF 946E 解: 记读入串为 s ,答案串为 ans,记读入串长度为 len,下标从 1 开始 ...
- eclipse-jee-luna安装ADT-23.0.6出现的问题,以及解决办法
刚安装好ADT-23.0.6,然后配置sdk路径(最新的版本android-22),然后创建一个新的Android Project; 对于布局界面会出现如下错误,导致无法显示布局界面: java.la ...
- C/C++应用--Window下获取硬件信息(CPU, 硬盘,网卡等)
一.头文件如下: #include <Windows.h> #include <string> #include <iostream> #include <w ...
- 数据结构实验之二叉树八:(中序后序)求二叉树的深度(SDUT 2804)
#include <stdio.h> #include <stdlib.h> #include <string.h> struct node { char data ...
- Java面向对象3(K~O)
K 正方形(SDUT 2444) import java.lang.reflect.Array; import java.util.*; public class Main { public ...
- 数据结构实验之数组一:矩阵转置(SDUT 2130)
Problem Description 数组--矩阵的转置 给定一个m*n的矩阵(m,n<=100),求该矩阵的转置矩阵并输出. Input 输入包含多组测试数据,每组测试数据格式如下: 第一行 ...
- W tensorflow/core/platform/cpu_feature_guard.cc:45]
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE3 ...