Problem

The Tower of Hanoi puzzle was invented by French mathematician Édouard Lucas in the second half of the 19th century. Here is its formulation.

There are three rods, denoted by the letters A, B, and C, and n disks of different integer sizes from 1 to  n. Initially the disks are stacked in ascending order of size on rod A, the smallest at the top, thus making a conical shape. Each move consists of taking the upper disk from one of the rods and placing it on top of the stack at another rod, with the following condition satisfied: no disk may be placed on top of a smaller disk. The objective of the puzzle is to move the entire stack to rod B in the smallest possible number of moves. The auxiliary rod C can be used in the process.

The state of the rods at each time can be described by a string of n letters A, B, and C: the letter at position i denotes the rod where the disk of size  i is at that time. For example, the initial state is given by the string containing letters A only, and the final state is described by the string consisting of letters B. The converse is also true: any such string uniquely describes a valid state of the rods, because the order of disks on a rod is uniquely defined by their size.

Imagine that you are required to pass from the initial state, where all the disks are on rod A, to some prescribed state. What is the smallest number of moves in which this can be done?

Input

The first line contains an integer n (1 ≤ n ≤ 50).

In the second line you are given n uppercase English letters A, B, C, which describe the final state.

Output

If it is impossible to obtain the final state from the initial state, output “-1” (without quotation marks). Otherwise, output the minimum number of moves. It is guaranteed that, if there is an answer, it does not exceed 10 18.

Example

input output
1
A
0
4
BBBB
15
7
BCCBABC
95

题解:读懂题意就蛮好做的了,就是汉诺塔的一个变形,让字母移到对应的A、B、C三个柱子上,只需要把所有的都移到相应位置。从最上面开始判断,直到到开始的那个就可以了。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
using namespace std;
typedef long long ll;
ll a[55];
char s[100];
int main()
{
ll n, i;
a[0] = 0;
a[1] = 1;
for(i = 2; i <= 50; i ++) // 汉诺塔公式
{
a[i] = a[i - 1] * 2 + 1;
}
scanf("%lld",&n);
scanf("%s",s+1);
ll x = 1; // 来表示一开始在的位置
ll ans = 0;
for(i = n; i >= 1; i--) // 如果想要由位置1移到位置3,那么2为跳板,位置x更新为跳板
{
if(x==1&&s[i]=='A') continue;
else if(x==1&&s[i]=='B')
{
ans+=a[i-1]+1;
x=3;
}
else if(x==1&&s[i]=='C')
{
ans+=a[i-1]+1;
x=2;
}
else if(x==2&&s[i]=='A')
{
ans+=a[i-1]+1;
x=3;
}
else if(x==2&&s[i]=='B')continue;
else if(x==2&&s[i]=='C')
{
ans+=a[i-1]+1;
x=1;
}
else if(x==3&&s[i]=='A')
{
ans+=a[i-1]+1;
x=2;
}
else if(x==3&&s[i]=='B')
{
ans+=a[i-1]+1;
x=1;
}
else if(x==3&&s[i]=='C') continue;
}
printf("%lld\n",ans);
return 0;
}

Towers of Hanoi Strike Back (URAL 2029)的更多相关文章

  1. Strange Towers of Hanoi POJ - 1958(递推)

    题意:就是让你求出4个塔的汉诺塔的最小移动步数,(1 <= n <= 12) 那么我们知道3个塔的汉诺塔问题的解为:d[n] = 2*d[n-1] + 1 ,可以解释为把n-1个圆盘移动到 ...

  2. ural 2029 Towers of Hanoi Strike Back (数学找规律)

    ural 2029 Towers of Hanoi Strike Back 链接:http://acm.timus.ru/problem.aspx?space=1&num=2029 题意:汉诺 ...

  3. HDU100题简要题解(2020~2029)

    HDU2020 绝对值排序 题目链接 Problem Description 输入n(n<=100)个整数,按照绝对值从大到小排序后输出.题目保证对于每一个测试实例,所有的数的绝对值都不相等. ...

  4. Hanoi双塔问题(递推)

    Hanoi双塔问题 时间限制: 1 Sec  内存限制: 128 MB提交: 10  解决: 4[提交][状态][讨论版][命题人:外部导入] 题目描述 给定A,B,C三根足够长的细柱,在A柱上放有2 ...

  5. Dean and Schedule (URAL 2026)

    Problem A new academic year approaches, and the dean must make a schedule of classes for first-year ...

  6. Scarily interesting! (URAL - 2021)

    Problem This year at Monsters University it is decided to arrange Scare Games. At the Games all camp ...

  7. POJ1958 Strange Towers of Hanoi [递推]

    题目传送门 Strange Towers of Hanoi Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3117   Ac ...

  8. zoj 2338 The Towers of Hanoi Revisited

    The Towers of Hanoi Revisited Time Limit: 5 Seconds Memory Limit: 32768 KB Special Judge You all mus ...

  9. The Towers of Hanoi Revisited---(多柱汉诺塔)

    Description You all must know the puzzle named "The Towers of Hanoi". The puzzle has three ...

随机推荐

  1. Flask-WTF的使用

    Flask-WTF的使用 一.安装Flask-WTF Flask-WTF 对 WTForms 进行了封装使它能够在 Flask 框架中可以被调用,其中 Flask-WTF 的功能都是继承自 WTFor ...

  2. Jobs(三) HTML的form表单提交中文后,后台取出乱码的问题

    解决form表单中提取的中文在后台乱码的问题有两种情况: form表单以GET方式提交: form表单以POST方式提交 一. 解决以GET方式提交的中文乱码问题,可以更改Tomcat服务器的配置文件 ...

  3. SQLServer · 最佳实践 · 如何将SQL Server 2012降级到2008 R2-博客-云栖社区-阿里云

    迁移须知 使用SQLSERVER 2012的特性在SQL 2008 R2不支持,比如新的分页方式 此迁移操作手册适用于MSSQL2012到MSSQL2008R2的迁移 迁移使用微软提供的脚本生成和导入 ...

  4. 重拾MVC——第一天:数据库连接与SqlDbHelper

    这个 SqlDbHelper 是我参考网上的和以前用过的 SqlDbHelper 自己写的一个非常简单的东西,主要是记录自己的学习情况 首先在Web.config中配置数据库连接字符串: <co ...

  5. wireshark 分析过滤数据

    1.过滤IP,如来源IP或者目标IP等于某个IP例子:ip.src eq 192.168.1.107 or ip.dst eq 192.168.1.107或者ip.addr eq 192.168.1. ...

  6. 解决 vue 使用 element 时报错ERROR in ./node_modules/element-ui/lib/theme-chalk/fonts/element-icons.ttf

    在 webpack.config.js 中加入这个依赖 { test: /\.(eot|svg|ttf|woff|woff2)(\?\S*)?$/, loader: 'file-loader' }

  7. python实现蓝牙通信

    安装和示例 linux下安装 -dev sudo pip install bluepy 官方示例 import btle class MyDelegate(btle.DefaultDelegate): ...

  8. spring boot 的一些高级用法

    1 spring boot 项目的创建 参考 https://www.cnblogs.com/PerZhu/p/10708809.html 2 首先我们先把Maven里面的配置完成 <depen ...

  9. select —— poll —— epoll

      import socket,select s=socket.socket() s.setblocking(False) s.setsockopt(socket.SOL_SOCKET,socket. ...

  10. 7. Function Decorators and Closures

    A decorator is a callable that takes another function as argument (the decorated function). The deco ...