1
2
5
14
42
132
429
1430
4862
16796
58786
208012
742900
2674440
9694845
35357670
129644790
477638700
1767263190
6564120420
24466267020
91482563640
343059613650
1289904147324
4861946401452
18367353072152
69533550916004
263747951750360
1002242216651368
3814986502092304
14544636039226909
55534064877048198
212336130412243110
812944042149730764
3116285494907301262
11959798385860453492
45950804324621742364
176733862787006701400
680425371729975800390
2622127042276492108820
10113918591637898134020
39044429911904443959240
150853479205085351660700
583300119592996693088040
2257117854077248073253720
8740328711533173390046320
33868773757191046886429490
131327898242169365477991900
509552245179617138054608572
1978261657756160653623774456
7684785670514316385230816156
29869166945772625950142417512
116157871455782434250553845880
451959718027953471447609509424
1759414616608818870992479875972
6852456927844873497549658464312
26700952856774851904245220912664
104088460289122304033498318812080
405944995127576985730643443367112
1583850964596120042686772779038896
6182127958584855650487080847216336
24139737743045626825711458546273312
94295850558771979787935384946380125
368479169875816659479009042713546950
1440418573150919668872489894243865350
5632681584560312734993915705849145100
22033725021956517463358552614056949950
86218923998960285726185640663701108500
337485502510215975556783793455058624700
1321422108420282270489942177190229544600
5175569924646105559418940193995065716350
20276890389709399862928998568254641025700
79463489365077377841208237632349268884500
311496878311103321137536291518809134027240
1221395654430378811828760722007962130791020
4790408930363303911328386208394864461024520
18793142726809884575211361279087545193250040
73745243611532458459690151854647329239335600
289450081175264899454283846029490767264392230
1136359577947336271931632877004667456667613940
4462290049988320482463241297506133183499654740
17526585015616776834735140517915655636396234280
68854441132780194707888052034668647142985206100
270557451039395118028642463289168566420671280440
1063353702922273835973036658043476458723103404520
4180080073556524734514695828170907458428751314320
16435314834665426797069144960762886143367590394940
64633260585762914370496637486146181462681535261000
254224158304000796523953440778841647086547372026600
1000134600800354781929399250536541864362461089950800
3935312233584004685417853572763349509774031680023800
15487357822491889407128326963778343232013931127835600
60960876535340415751462563580829648891969728907438000
239993345518077005168915776623476723006280827488229600
944973797977428207852605870454939596837230758234904050
3721443204405954385563870541379246659709506697378694300
14657929356129575437016877846657032761712954950899755100
57743358069601357782187700608042856334020731624756611000
227508830794229349661819540395688853956041682601541047340
896519947090131496687170070074100632420837521538745909320
粘贴自@残影dd
略略略
- HDU 1023 Traning Problem (2) 高精度卡特兰数
Train Problem II Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Sub ...
- 1023 Train Problem II(卡特兰数)
Problem Description As we all know the Train Problem I, the boss of the Ignatius Train Station want ...
- 组合数学的卡特兰数 TOJ 3551: Game of Connections
这个就是卡特兰数的经典问题 直接用这个公式就好了,但是这个题涉及大数的处理h(n)=h(n-1)*(4*n-2)/(n+1) 其实见过好几次大数的处理了,有一次他存的恰好不多于30位,直接分成两部分l ...
- hdu1032 Train Problem II (卡特兰数)
题意: 给你一个数n,表示有n辆火车,编号从1到n,入站,问你有多少种出站的可能. (题于文末) 知识点: ps:百度百科的卡特兰数讲的不错,注意看其参考的博客. 卡特兰数(Catalan):前 ...
- HDU1130 卡特兰数
How Many Trees? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- hdu 5673 Robot 卡特兰数+逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- hdu 1023 卡特兰数+高精度
Train Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDU-4828 卡特兰数+带模除法
题意:给定2行n列的长方形,然后把1—2*n的数字填进方格内,保证每一行,每一列都是递增序列,求有几种放置方法,对1000000007取余: 思路:本来想用组合数找规律,但是找不出来,搜题解是卡特兰数 ...
- HDU 1023 Train Problem II (卡特兰数,经典)
题意: 给出一个数字n,假设火车从1~n的顺序分别进站,求有多少种出站序列. 思路: 卡特兰数的经典例子.n<101,用递推式解决.需要使用到大数.n=100时大概有200位以下. #inclu ...
随机推荐
- MogileFS操作指令
使用mogtool来操作文件 加入文件:mogtool inject <file_name> <key_name> --trackers=192.168.1.106:7001 ...
- jacascript 基础数据类型(一)
前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 数据类型有 number.boolean.string.object.null.undefined; un ...
- 洛谷 P1540 机器翻译
链接:https://www.luogu.org/problemnew/show/p1540 题目: 题目背景 小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章. 题目描述 这个翻译 ...
- Java单例设计模式和多例设计模式
单例设计模型 教学视频链接:https://edu.aliyun.com/course/1011 1,private不可以在类外部访问,但可以在内部访问 2,此时Singleton类内部的instan ...
- 使用swagger在netcorewebapi项目中自动生成文档
一.背景 随着前后端分离模式大行其道,我们需要将后端接口撰写成文档提供给前端,前端可以查看我们的接口,并测试,提高我们的开发效率,减少无效的沟通.在此情况下,通过代码自动生成文档,这种需求应运而生,s ...
- pytorch神经网络实现的基本步骤
转载自:https://blog.csdn.net/dss_dssssd/article/details/83892824 版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载 ...
- 恺撒密码 I
恺撒密码 I ...
- 0.a开始数据结构征程
决定开始从mooc和ppt上学习数据结构,......书暂时不看.在进入数据结构之前,我首先将自己以一个还未进入大山但又向往山中美景的探险者身份对数据结构的几点疑问的答案的寻找和思考写在下面. 什么是 ...
- springboot启动流程(十二)springboot事务自动配置
所有文章 https://www.cnblogs.com/lay2017/p/11478237.html 正文 在上一篇文章中,我们简单了解了aop的处理过程.代理增强之前,先生成Advisor,然后 ...
- UDP及操作系统理论
UDP介绍 udp协议又称用户数据报协议 在OSI七层模型中,它于TCP共同存在于传输层 仅用于不要求可靠性,不要求分组顺序且数据较小的简单传输,力求速度 UDP结合socket用法 1.创建sock ...