算法 - k-means++
Kmeans++算法
Kmeans++算法,主要可以解决初始中心的选择问题,不可解决k的个数问题。
Kmeans++主要思想是选择的初始聚类中心要尽量的远。
做法:
1. 在输入的数据点中随机选一个作为第一个聚类中心。
2. 对于所有数据点,计算它与已有的聚类中心的最小距离D(x)
3. 选择一个数据点作为新增的聚类中心,选择原则:D(x)较大的点被选为聚类中心的概率较大。
4. 重复2~3步骤直到选出k个聚类中心。
5. 运行Kmeans算法。
package com.lfy.main; import java.util.ArrayList;
import java.util.List;
import java.util.Random; /**
* K均值聚类算法
*/
public class Kmeans {
private int numOfCluster;// 分成多少簇
private int timeOfIteration;// 迭代次数
private int dataSetLength;// 数据集元素个数,即数据集的长度
private ArrayList<float[]> dataSet;// 数据集
private ArrayList<float[]> center;// 质心
private ArrayList<ArrayList<float[]>> cluster; //簇
private ArrayList<Float> sumOfErrorSquare;// 误差平方和
private Random random; /**
* 设置需分组的原始数据集
*
* @param dataSet
*/ public void setDataSet(ArrayList<float[]> dataSet) {
this.dataSet = dataSet;
} /**
* 获取结果分组
*
* @return 结果集
*/ public ArrayList<ArrayList<float[]>> getCluster() {
return cluster;
} /**
* 构造函数,传入需要分成的簇数量
*
* @param numOfCluster
* 簇数量,若numOfCluster<=0时,设置为1,若numOfCluster大于数据源的长度时,置为数据源的长度
*/
public Kmeans(int numOfCluster) {
if (numOfCluster <= 0) {
numOfCluster = 1;
}
this.numOfCluster = numOfCluster;
} /**
* 初始化
*/
private void init() {
timeOfIteration = 0;
random = new Random();
//如果调用者未初始化数据集,则采用内部测试数据集
if (dataSet == null || dataSet.size() == 0) {
initDataSet();
}
dataSetLength = dataSet.size();
//若numOfCluster大于数据源的长度时,置为数据源的长度
if (numOfCluster > dataSetLength) {
numOfCluster = dataSetLength;
}
center = initCenters();
cluster = initCluster();
sumOfErrorSquare = new ArrayList<Float>();
//查看init质心的选取情况
printDataArray(center,"initCenter");
} /**
* 如果调用者未初始化数据集,则采用内部测试数据集
*/
private void initDataSet() {
dataSet = new ArrayList<float[]>();
// 其中{6,3}是一样的,所以长度为15的数据集分成14簇和15簇的误差都为0
float[][] dataSetArray = new float[][] { { 8, 2 }, { 3, 4 }, { 2, 5 },
{ 4, 2 }, { 7, 3 }, { 6, 2 }, { 4, 7 }, { 6, 3 }, { 5, 3 },
{ 6, 3 }, { 6, 9 }, { 1, 6 }, { 3, 9 }, { 4, 1 }, { 8, 6 } }; for (int i = 0; i < dataSetArray.length; i++) {
dataSet.add(dataSetArray[i]);
}
} /**
* 随机选取k个质点
* 初始化中心点,分成多少簇就有多少个中心点
*
* @return 中心点集
*/
private ArrayList<float[]> initCenters() {
ArrayList<float[]> center = new ArrayList<float[]>();
int[] randoms = new int[numOfCluster];
int temp = random.nextInt(dataSetLength);
randoms[0] = temp;
//----------------------
List<Integer> list=new ArrayList<Integer>();
list.add(temp);
//randoms数组中存放dataSet数据集的不同的下标
for (int i = 1; i < numOfCluster; i++) {
// while (true) {
// temp = random.nextInt(dataSetLength);
//
// int j=0;
// for(; j<i; j++){
// if(randoms[j] == temp){
// break;
// }
// }
// //没有与任何一个已经选定的质心重复
// //跳出外层循环,设定一个随机质心
// if (j == i) {
// break;
// }
// }
//----------------------
ArrayList<float[]> ltemp=new ArrayList<float[]>();
//从剩下的点中继续找质点
for (int k = 0; k < dataSetLength; k++) {
//如果该点还没有被选择为质点,则计算它与已有的所有质点的最小距离
if(!list.contains(k)) {
float[] distance = new float[numOfCluster];
for (int j = 0; j < list.size(); j++) {
//某点k到已有中心点的距离
distance[j] = distance(dataSet.get(k), dataSet.get(list.get(j)));
}
int j = minDistance(distance);
float[] f={0,0};
f[0]=k;
f[1]=distance[j];
ltemp.add(f);
}
}
int m=maxDistance(ltemp);
temp=(int) ltemp.get(m)[0];
list.add(temp);
//----------------------
randoms[i] = temp;
} for (int i = 0; i < numOfCluster; i++) {
center.add(dataSet.get(randoms[i]));// 生成初始化中心点集
}
return center;
} /**
* 初始化簇集合
*
* @return 一个分为k簇的空数据的簇集合
*/
private ArrayList<ArrayList<float[]>> initCluster() {
ArrayList<ArrayList<float[]>> cluster = new ArrayList<ArrayList<float[]>>();
for (int i = 0; i < numOfCluster; i++) {
cluster.add(new ArrayList<float[]>());
}
return cluster;
} /**
* 计算两个点之间的距离
*
* @param element
* 点1
* @param center
* 点2
* @return 距离
*/
private float distance(float[] element, float[] center) {
float distance = 0.0f;
float x = element[0] - center[0];
float y = element[1] - center[1];
float z = x * x + y * y;
distance = (float) Math.sqrt(z); return distance;
} /**
* 获取距离集合中最小距离的位置
*
* @param distance
* 距离数组
* @return 最小距离在距离数组中的位置
*/
private int minDistance(float[] distance) {
float minDistance = distance[0];
int minLocation = 0;
for (int i = 1; i < distance.length; i++) {
if (distance[i] <= minDistance) {
minDistance = distance[i];
minLocation = i;
}
}
return minLocation;
} /**
* 获取距离集合中最小距离的最大的位置
*
* @param distance
* 各点最小距离数组
* @return 各点最小距离在距离数组中的位置
*/
private int maxDistance(ArrayList<float[]> distance) {
float[] maxDistance = distance.get(0);
int maxLocation = 0;
for (int i = 1; i < distance.size(); i++) {
if (distance.get(i)[1] >= maxDistance[1]) {
maxDistance = distance.get(i);
maxLocation = i;
}
}
return maxLocation;
} /**
* 核心,将当前元素放到最小距离的簇中
*/
private void clusterSet() {
float[] distance = new float[numOfCluster];
for (int i = 0; i < dataSetLength; i++) {
for (int j = 0; j < numOfCluster; j++) {
//计算数据集点与所有中心点的距离
distance[j] = distance(dataSet.get(i), center.get(j));
}
int j = minDistance(distance);
// 核心,将当前元素放到最小距离中心相关的簇中
cluster.get(j).add(dataSet.get(i));
}
} /**
* 求族中各点到其中心点距离的平方,即误差平方
*
* @param element
* 点1
* @param center
* 点2
* @return 误差平方
*/
private float errorSquare(float[] element, float[] center) {
float x = element[0] - center[0];
float y = element[1] - center[1]; float errSquare = x * x + y * y; return errSquare;
} /**
* 计算一次迭代误差平方和
*/
private void countRule() {
float jcF = 0;
for (int i = 0; i < cluster.size(); i++) {
for (int j = 0; j < cluster.get(i).size(); j++) {
jcF += errorSquare(cluster.get(i).get(j), center.get(i));
}
}
sumOfErrorSquare.add(jcF);
} /**
* 设置新的簇中心方法
*/
private void setNewCenter() {
for (int i = 0; i < numOfCluster; i++) {
int n = cluster.get(i).size();
if (n != 0) {
float[] newCenter = { 0, 0 };
for (int j = 0; j < n; j++) {
newCenter[0] += cluster.get(i).get(j)[0];
newCenter[1] += cluster.get(i).get(j)[1];
}
// 设置一个平均值
newCenter[0] = newCenter[0] / n;
newCenter[1] = newCenter[1] / n;
center.set(i, newCenter);
}
}
printDataArray(center,"newCenter");
} /**
* 打印数据,测试用
*
* @param dataArray
* 数据集
* @param dataArrayName
* 数据集名称
*/
public void printDataArray(ArrayList<float[]> dataArray,
String dataArrayName) {
for (int i = 0; i < dataArray.size(); i++) {
System.out.println("print:" + dataArrayName + "[" + i + "]={"
+ dataArray.get(i)[0] + "," + dataArray.get(i)[1] + "}");
}
System.out.println("===================================");
} /**
* Kmeans算法核心过程方法
*/
private void kmeans() {
init(); // 循环分组,直到误差不变为止
while (true) {
clusterSet(); countRule(); // 误差不变了,分组完成
if (timeOfIteration != 0) {
if (sumOfErrorSquare.get(timeOfIteration) - sumOfErrorSquare.get(timeOfIteration - 1) == 0) {
break;
}
}
//设置各簇新的质心,继续迭代
setNewCenter();
timeOfIteration++;
cluster.clear();
cluster = initCluster();
}
System.out.println("note:the times of repeat:timeOfIteration="+timeOfIteration);//输出迭代次数
} /**
* 执行算法
*/
public void execute() {
long startTime = System.currentTimeMillis();
System.out.println("kmeans begins");
kmeans();
long endTime = System.currentTimeMillis();
System.out.println("kmeans running time=" + (endTime - startTime)
+ "ms");
System.out.println("kmeans ends");
System.out.println();
}
}
package com.lfy.main;
import java.util.ArrayList;
public class KmeansTest {
public static void main(String[] args)
{
//初始化一个Kmean对象,设置k值
Kmeans k=new Kmeans(3);
ArrayList<float[]> dataSet=new ArrayList<float[]>();
dataSet.add(new float[]{3,4});
dataSet.add(new float[]{4,4});
dataSet.add(new float[]{3,3});
dataSet.add(new float[]{4,3});
//
dataSet.add(new float[]{0,2});
dataSet.add(new float[]{1,2});
dataSet.add(new float[]{0,1});
dataSet.add(new float[]{1,1});
//
dataSet.add(new float[]{3,1});
dataSet.add(new float[]{3,0});
dataSet.add(new float[]{5,0});
dataSet.add(new float[]{4,0});
dataSet.add(new float[]{4,1});
//设置原始数据集
k.setDataSet(dataSet);
//执行算法
k.execute();
//得到聚类结果
ArrayList<ArrayList<float[]>> cluster=k.getCluster();
//查看结果
for(int i=0;i<cluster.size();i++)
{
k.printDataArray(cluster.get(i), "cluster["+i+"]");
}
}
}
算法 - k-means++的更多相关文章
- 第4章 最基础的分类算法-k近邻算法
思想极度简单 应用数学知识少 效果好(缺点?) 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 distances = [] for x_train in X_train ...
- KNN 与 K - Means 算法比较
KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...
- ML: 聚类算法-K均值聚类
基于划分方法聚类算法R包: K-均值聚类(K-means) stats::kmeans().fpc::kmeansruns() K-中心点聚类(K-Medoids) ...
- 聚类算法:K-means 算法(k均值算法)
k-means算法: 第一步:选$K$个初始聚类中心,$z_1(1),z_2(1),\cdots,z_k(1)$,其中括号内的序号为寻找聚类中心的迭代运算的次序号. 聚类中心的向量值可任意设 ...
- 聚类算法:K均值、凝聚层次聚类和DBSCAN
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...
- 分类算法——k最近邻算法(Python实现)(文末附工程源代码)
kNN算法原理 k最近邻(k-Nearest Neighbor)算法是比较简单的机器学习算法.它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本在特征空间中的k个最近邻(最相似)的样 ...
- 【学习笔记】分类算法-k近邻算法
k-近邻算法采用测量不同特征值之间的距离来进行分类. 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 使用数据范围:数值型和标称型 用例子来理解k-近邻算法 电影可以按 ...
- 常见聚类算法——K均值、凝聚层次聚类和DBSCAN比较
聚类分析就仅根据在数据中发现的描述对象及其关系的信息,将数据对象分组(簇).其目标是,组内的对象相互之间是相似的,而不同组中的对象是不同的.组内相似性越大,组间差别越大,聚类就越好. 先介绍下聚类的不 ...
- 分类算法----k近邻算法
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...
- 【机器学习】聚类算法——K均值算法(k-means)
一.聚类 1.基于划分的聚类:k-means.k-medoids(每个类别找一个样本来代表).Clarans 2.基于层次的聚类:(1)自底向上的凝聚方法,比如Agnes (2)自上而下的分裂方法,比 ...
随机推荐
- 51 Nod 1092 回文字符串
1092 回文字符串 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 回文串是指aba.abba.cccbccc.aaaa这种左右对称的字符串.每 ...
- UVA 315 求割点 模板 Tarjan
D - D Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Status Pract ...
- 【BZOJ4176】 Lucas的数论
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其 ...
- firefox 丢失的回话
升级了新版Firefox后如果插件被禁用的,可以在Firefox配置编辑页面(about:config页面)把 xpinstall.signatures.required首选项设为false来强制禁用 ...
- 编写批处理使用msbuild编译项目
echo off ::请把此bat脚本放到以下代码路径下 并在环境变量中配置对应版本的vs编译器的值 ::vs2017如:C:\Program Files (x86)\Microsoft Visual ...
- android 实例-弱引用示例 Handler正确使用方法
实际问题 android 习惯性问题:在使用handler的时候喜欢使用内部类形式. private final Handler handler = new Handler(){ @Override ...
- Android jni/ndk编程四:jni引用类型
一.JNI引用类型 JNI支持三种类型的 opaque reference:local references, global references,和weak global references,下面 ...
- LC 763. Partition Labels
A string S of lowercase letters is given. We want to partition this string into as many parts as pos ...
- 使用MyBatis的动态SQL表达式时遇到的“坑”(integer)
现有一项目,ORM框架使用的MyBatis,在进行列表查询时,选择一状态(值为0)通过动态SQL拼接其中条件但无法返回正常的查询结果,随后进行排查. POJO private Integer stat ...
- layui时间控件选择时间范围
layui.use([ 'laydate'], function(){ var $ = layui.$; var laydate = layui.laydate; var max = ${nowYea ...