题目链接

https://atcoder.jp/contests/agc009/tasks/agc009_e

题解

又被劝退了。。。

第一步转化非常显然: 就等价于一开始有一个数\(1\), 有\(\frac{n+m-1}{k-1}\)次机会每次选择一个数把它变成\(k\)个原来的\(\frac{1}{k}\), 最后从\(n+m\)个数中选出\(m\)个,问能选出多少不同的数。

然后考虑化成\(k\)进制小数,假设最后形成的数是\(d_1,d_2,...,d_{n+m}\), 则\(\sum^{n+m}_{i=1} d_i=1\).

一个\(d\)进制小数可以被表示成\(m\)个\(k\)的负整数次幂之和当且仅当其每一位数值之和不超过\(m\)且和\(m\)模\((k-1)\)同余。(显然)

但同时还要保证\(1\)可以被表示成\((n+m)\)个\(k\)的负整数次幂之和,且包含这\(m\)个数。那么就可以转化成\(1\)减这个小数可以被表示成\(n\)个\(k\)的负整数次幂之和。(行吧我就这一步没想出来……自闭了啊……)

所以最后也就是要计算有多少个序列\(a_1,a_2,...,a_l\ (1\le l\le \frac{n+m-1}{k-1})\), 满足\(0\le a_i\le k-1, a_l>0, \sum^l_{i=1}a_i\le m,\sum^l_{i=1}a_i\equiv m(\mod k-1), \sum^l_{i=1}k-1-a_i\le n-1, \sum^l_{i=1}k-1-a_i\equiv n-1(\mod k-1)\), 直接dp即可。时间复杂度\(O((n+m)k)\).

代码

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cassert>
#define llong long long
using namespace std; const int N = 4e3;
const int P = 1e9+7;
llong dp[N+3][N+3],sdp[N+3][N+3];
int n1,n2,m,len;
llong ans; int main()
{
scanf("%d%d%d",&n1,&n2,&m); len = (n1+n2-1)/(m-1);
dp[0][0] = 1ll; for(int j=0; j<=n2; j++) sdp[0][j] = 1;
for(int i=1; i<=len; i++)
{
for(int j=0; j<=n2; j++)
{
if(j>=m) {dp[i][j] = (sdp[i-1][j]-sdp[i-1][j-m]+P)%P;}
else {dp[i][j] = sdp[i-1][j];}
if((n2-j)%(m-1)==0 && i*(m-1)-j<=n1-1 && (n1-1-i*(m-1)+j)%(m-1)==0) {ans = (ans+dp[i][j]-dp[i-1][j]+P)%P;}
}
sdp[i][0] = dp[i][0]; for(int j=1; j<=n2; j++) sdp[i][j] = (sdp[i][j-1]+dp[i][j])%P;
}
printf("%lld\n",ans);
return 0;
}

AtCoder AGC009E Eternal Average (DP)的更多相关文章

  1. AGC009E Eternal Average

    atc 神题orz 那个擦掉\(k\)个数然后写上一个平均值可以看成是\(k\)叉Huffman树的构造过程,每次选\(k\)个点合成一个新点,然后权值设为平均值.这些0和1都会在叶子的位置,同时每个 ...

  2. 【AGC009E】Eternal Average

    [AGC009E]Eternal Average 题面 洛谷 题解 神仙题.jpg 我们把操作看成一棵\(k\)叉树,其中每个节点有权值,所有叶子节点(共\(n+m\)个)就是\(0\)或\(1\). ...

  3. AtCoder Grand Contest 009 E:Eternal Average

    题目传送门:https://agc009.contest.atcoder.jp/tasks/agc009_e 题目翻译 纸上写了\(N\)个\(1\)和\(M\)个\(0\),你每次可以选择\(k\) ...

  4. AtCoder AGC001E BBQ Hard (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc001/tasks/agc001_e 题解: 求\(\sum^n_{i=1}\sum^n_{j=i+1} {A_i+A_j+B ...

  5. AtCoder AGC004E Salvage Robots (DP)

    题目链接 https://atcoder.jp/contests/agc004/tasks/agc004_e 题解 本题的难度不在于想到大体思路,而在于如何把代码写对.. 首先我们可以不让机器人动,让 ...

  6. AtCoder AGC032D Rotation Sort (DP)

    题目链接 https://atcoder.jp/contests/agc032/tasks/agc032_d 题解 又是一道神仙题啊啊啊啊...atcoder题真的做不来啊QAQ 第一步又是神仙转化: ...

  7. Atcoder ARC101 E 树dp

    https://arc101.contest.atcoder.jp/tasks/arc101_c 题解是也是dp,好像是容斥做的,但是看不懂,而且也好像没讲怎么变n^2,看了写大佬的代码,自己理解了一 ...

  8. AtCoder AGC002F Leftmost Ball (DP、组合计数)

    题目链接: https://atcoder.jp/contests/agc002/tasks/agc002_f 题解: 讲一下官方题解的做法: 就是求那个图(官方题解里的)的拓扑序个数,设\(dp[i ...

  9. Atcoder C - Vacation ( DP )

    C - Vacation Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement Taro' ...

随机推荐

  1. .Net面试题三

    1..Net中类和结构的区别? 2.死锁地必要条件?怎么克服? 3.接口是否可以继承接口?抽象类是否可以实现接口?抽象类是否可以继承实体类? 4.构造器COnstructor是否可以被继承?是否可以被 ...

  2. mybatis 主键自增异常

     org.springframework.jdbc.UncategorizedSQLException: Error getting generated key or setting result t ...

  3. API接口利用ActionFilterAttribute实现接口耗时检测

    1.主要代码 using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; ...

  4. Python的argparse模块的使用

    Python的argparse模块的使用 最近看到一份Pytorch代码有以下内容: # Training settings parser = argparse.ArgumentParser(desc ...

  5. 关于servlet类,继承HttpServlet,但是无法导入HttpServlet包的原因和解决方法

    原因:缺少tomcat的libraries(HttpServlet对应位置在tomcat的lib中====) 解决: 1. 2. 3. 4.

  6. java面试1

    1.面向对象的特征·有·哪些方面 1)抽象 抽象就是忽略一个主题中与当前目标无关的那些方面,以便更充分地注意与当前目标有关的方面.抽象并不打算了解全部问题,而只是选择其中的一部分,暂时不用部分细节.抽 ...

  7. java八个框架

    在本文中,我只是整理了以下主流框架: 1.阿帕切米纳 项目主页:http://mina.apache.org/ 它为开发高性能和高可用性网络应用提供了一个非常方便的框架,支持基于Java NIO技术的 ...

  8. vue.js项目开发实战笔记001——准备工作

    1,Vue.js 是一套构建用户界面的渐进式框架. 2,Vue.js 是由尤雨溪开发出的,最早发布于2014年2月. 3,引用vue.js地址一CDN: <script src="ht ...

  9. Vue-----this.$nextTick()

    Vue-----this.$nextTick() $nextTick Vue.nextTick()是在下次 DOM 更新循环结束之后执行延迟回调,在修改数据之后使用 $nextTick,则可以在回调中 ...

  10. Linux下的打包操作

    范例一:将整个 test 目录下的文件全部打包成为 test.tar[python@master ~]$ tar -cvf test.tar test/         ==仅打包,不压缩!test/ ...