Make It Connected

CodeForces - 1095F

You are given an undirected graph consisting of nn vertices. A number is written on each vertex; the number on vertex ii is aiai. Initially there are no edges in the graph.

You may add some edges to this graph, but you have to pay for them. The cost of adding an edge between vertices xx and yy is ax+ayax+ay coins. There are also mm special offers, each of them is denoted by three numbers xx, yy and ww, and means that you can add an edge connecting vertices xx and yy and pay ww coins for it. You don't have to use special offers: if there is a pair of vertices xx and yy that has a special offer associated with it, you still may connect these two vertices paying ax+ayax+ay coins for it.

What is the minimum number of coins you have to spend to make the graph connected? Recall that a graph is connected if it's possible to get from any vertex to any other vertex using only the edges belonging to this graph.

Input

The first line contains two integers nn and mm (1≤n≤2⋅1051≤n≤2⋅105, 0≤m≤2⋅1050≤m≤2⋅105) — the number of vertices in the graph and the number of special offers, respectively.

The second line contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤10121≤ai≤1012) — the numbers written on the vertices.

Then mm lines follow, each containing three integers xx, yy and ww (1≤x,y≤n1≤x,y≤n, 1≤w≤10121≤w≤1012, x≠yx≠y) denoting a special offer: you may add an edge connecting vertex xx and vertex yy, and this edge will cost ww coins.

Output

Print one integer — the minimum number of coins you have to pay to make the graph connected.

Examples

Input

3 2
1 3 3
2 3 5
2 1 1

Output

5

Input

4 0
1 3 3 7

Output

16

Input

5 4
1 2 3 4 5
1 2 8
1 3 10
1 4 7
1 5 15

Output

18

Note

In the first example it is possible to connect 11 to 22 using special offer 22, and then 11 to 33 without using any offers.

In next two examples the optimal answer may be achieved without using special offers.

题意:

赵老师因为感冒回家进行休息

在睡梦中他竟然来到了一个神奇的地方

这个地方可以抽象为n个点,每个点有一个点权,第i个点的点权为a_i

此时,他的脑海里竟然浮现出了一段文字:

卑鄙的异乡人啊,

你太年轻太简单了,有时还很朴素

我需要给你一些微小的考验

所有点联通之时,

返程之路将浮现。

赵老师知道,想要在点i和点j之间连一条边,所需时间为a_i+a_j

但是作为一个单身多年的魔法师,他可以施展m次魔法,第i次魔法可以在x_i和y_i之间连一条边,所需时间是w_i

赵老师清楚的记得,第二天他还需要上课,因此你需要帮他算出将所有点联通所需的最短时间是多少

思路:

将每一个节点和除了它自己以外的其他n-1个节点中,权值最小的节点相连接。

这样一共是n个边,

还有题目给出的m个边。

在这n+m个边中跑Kruskal算法,求出最小生成树的代价即可。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
struct Edge
{
int f, t;
ll w;
Edge() {}
Edge(int ff, int tt, ll ww)
{
if(ff==9&&tt==4)
{
ff=9;
}
f = ff;
t = tt;
w = ww;
}
};
std::vector<Edge> edge;
bool cmp(Edge a, Edge b)
{
return a.w < b.w;
}
// 并查集部分
int fa[maxn];
int findpar(int x)
{
if (fa[x] == x)
return x;
else
return fa[x] = findpar(fa[x]);
}
void initufs(int n)
{
repd(i, 1, n)
{
fa[i] = i;
}
}
void Merge(int x,int y)
{
x=findpar(x);
y=findpar(y);
if(x!=y)
{
fa[x]=y;
}
}
int n, m; //
ll a[maxn];
ll Kruskal()
{
ll res = 0ll;
initufs(n);
int cnt = 0; // 记录了MST加入了几个节点
for (int i = 0; i < edge.size(); i++)
{
int u = findpar(edge[i].f);
int v = findpar(edge[i].t);
if (u == v)
continue;
Merge(u,v);
res += edge[i].w;
cnt++;
if (cnt == n - 1) // 已经加满了树
break;
}
if (cnt != n - 1)
return -1;
else
return res;
}
typedef pair<ll, int> pli;
pli pre[maxn];
pli last[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
du2(n, m);
repd(i, 1, n)
{
scanf("%lld", &a[i]);
}
pre[1] = mp(a[1], 1);
last[n] = mp(a[n], n);
repd(i, 2, n)
{
if (a[i] < pre[i - 1].fi)
{
pre[i] = mp(a[i], i);
} else
{
pre[i] = pre[i - 1];
}
}
for (int i = n - 1; i >= 1; --i)
{
if (a[i] < last[i + 1].fi)
{
last[i] = mp(a[i], i);
} else
{
last[i] = last[i + 1];
}
}
edge.push_back(Edge(1, last[2].se, last[2].fi + a[1]));
edge.push_back(Edge(n, pre[n - 1].se, pre[n - 1].fi + a[n]));
repd(i, 2, n - 1)
{
if (last[i + 1].fi < pre[i - 1].fi)
{
edge.push_back(Edge(i, last[i + 1].se, last[i + 1].fi + a[i]));
} else
{
edge.push_back(Edge(i, pre[i - 1].se, pre[i - 1].fi + a[i]));
}
}
repd(i, 1, m)
{
int x, y;
ll z;
scanf("%d %d %lld", &x, &y, &z);
edge.push_back(Edge(x, y, z));
}
sort(ALL(edge), cmp);
if (n == 1)
{
puts("0");
return 0;
}
printf("%lld\n", Kruskal());
return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Make It Connected CodeForces - 1095F (建图+最小生成树)的更多相关文章

  1. poj 3026 Borg Maze bfs建图+最小生成树

    题目说从S开始,在S或者A的地方可以分裂前进. 想一想后发现就是求一颗最小生成树. 首先bfs预处理得到每两点之间的距离,我的程序用map做了一个映射,将每个点的坐标映射到1-n上,这样建图比较方便. ...

  2. BZOJ 4242 水壶(BFS建图+最小生成树+树上倍增)

    题意 JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有P个,编号为1...P. JOI君只能进入建筑 ...

  3. 题解——洛谷P1550 [USACO08OCT]打井Watering Hole(最小生成树,建图)

    题面 题目背景 John的农场缺水了!!! 题目描述 Farmer John has decided to bring water to his N (1 <= N <= 300) pas ...

  4. Codeforces Round #523 (Div. 2) E. Politics(最小费+思维建图)

    https://codeforces.com/contest/1061/problem/E 题意 有n个点(<=500),标记第i个点的代价a[i],然后分别在这n个点建两棵树,对于每颗树的每个 ...

  5. 区间->点,点->区间,线段树优化建图+dijstra Codeforces Round #406 (Div. 2) D

    http://codeforces.com/contest/787/problem/D 题目大意:有n个点,三种有向边,这三种有向边一共加在一起有m个,然后起点是s,问,从s到所有点的最短路是多少? ...

  6. CodeForces 786B Legacy(线段树优化建图+最短路)

    [题目链接] http://codeforces.com/problemset/problem/786/B [题目大意] 给出一些星球,现在有一些传送枪,可以从一个星球到另一个星球, 从一个星球到另一 ...

  7. Codeforces Round #545 (Div. 2) E 强连通块 + dag上求最大路径 + 将状态看成点建图

    https://codeforces.com/contest/1138/problem/E 题意 有n个城市(1e5),有m条单向边(1e5),每一周有d天(50),对于每个城市假如在某一天为1表示这 ...

  8. 【转】Codeforces Round #406 (Div. 1) B. Legacy 线段树建图&&最短路

    B. Legacy 题目连接: http://codeforces.com/contest/786/problem/B Description Rick and his co-workers have ...

  9. [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)

    [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...

随机推荐

  1. Linux系统查看CPU使用率命令

    在linux的系统维护中,可能需要经常查看cpu使用率,分析系统整体的运行情况.而监控CPU的性能一般包括以下3点:运行队列.CPU使用率和上下文切换. 1.top 这个命令很常用,在第三行有显示CP ...

  2. vim实现批量注释和批量删除注释

    批量注释 1.进入文档,vim test.txt 后,按住ctrl+v进入VISUAL BLOCK模式,上下选择需要注释的行 2.按大写键,再按i,或者直接按shift+i,进入INSERT模式,输入 ...

  3. windows7-maven配置

    1.确认jdk安装 2.下载 3.解压缩 4.配置环境变量 (1)计算机属性--高级系统配置--高级--环境变量---系统变量--新建 (2)添加环境变量 MAVEN_HOME PATH中添加到mav ...

  4. linux查看端口进程占用情况

    本文介绍linux如何查看端口被哪个进程占用的方法: 1.lsof -i:端口号 2.netstat -tunlp|grep 端口号 都可以查看指定端口被哪个进程占用的情况 [步骤一]lsof -i ...

  5. httpurlConnection客户端发送文件与服务端接受文件

    import java.io.BufferedReader; import java.io.ByteArrayOutputStream; import java.io.DataInputStream; ...

  6. Qt中QGraphics类坐标映射关系详解

    1.Item(图元)坐标:属于局部坐标,通常以图元中心为原点(中心对称),非中心对称类,比如dialog类,一般以左上角为原点,正方向x朝右,y朝下. 2.setPos的坐标是父类坐标系的坐标,一般对 ...

  7. layer.msg弹窗后没有自动关闭——问题解决

    layer.msg弹窗后没有自动关闭,里面也没有配time: -1 layer.msg("信息体", {time: -1}); 后面发现是jquer和layer版本不对,之前自己用 ...

  8. 洛谷 题解 P2676 【超级书架】

    题解 P2676 [超级书架] 这题就只是一个从大到小的排序而已,用"sort"函数 再用"while"判断奶牛塔的高度是否比书架高度要高 送上代码: #inc ...

  9. [Agc029E]Wandering TKHS_树形dp_树上差分

    Wandering TKHS 题目链接:https://atcoder.jp/contests/agc029/tasks/agc029_e 数据范围:略. 题解: 好神啊 Orz司队 https:// ...

  10. bootstrap-table的一些配置参数例子

    $('#reportTable').bootstrapTable({ method: 'post', url: '/qStock/AjaxPage', dataType: "json&quo ...