题目传送门:http://uoj.ac/problem/94

  这是一道集合幂级数的入门题目。我们先考虑求出每个点集的连通生成子图个数,记为$g_S$,再记$h_S$为点集$S$的生成子图个数,容易发现,$h_S=2^{size_S}$,其中$size_S$为点集$S$的极大生成子图内的边数。特殊的,$f_{\o}=g_{\o}=0$。

  定义集合幂级数的乘法为子集卷积,考虑集合幂级数$h$和$g$的关系,我们可以得到

    $$h=1+\sum_{k \geq 1}\frac{g^k}{k!}=1+e^h$$

  因此可得

    $$g=\ln{(1+h)}$$

  我们再记$f_S$为点集$S$的生成子图的价值和,可得到

    $$f=1+\sum{k \geq 1}\frac{g^k}{k!}k!=\frac{1}{1-g}$$

  计算集合幂级数的对数和逆时,因为我们将乘法定义为子集卷积,所以可以将其映射成集合占位幂级数$f_{|S|,S}$后,在将每个集合对应的位看作形式幂级数再暴力求解。

  代码:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#define mod 998244353
#define Mod1(x) (x>=mod?x-mod:x)
#define Mod2(x) (x<0?x+mod:x)
#define ll long long
inline ll read()
{
ll x=; char c=getchar(),f=;
for(;c<''||''<c;c=getchar())if(c=='-')f=-;
for(;''<=c&&c<='';c=getchar())x=x*+c-'';
return x*f;
}
inline void write(ll x)
{
static int buf[],len; len=;
if(x<)x=-x,putchar('-');
for(;x;x/=)buf[len++]=x%;
if(!len)putchar('');
else while(len)putchar(buf[--len]+'');
}
inline void writeln(ll x){write(x); putchar('\n');}
inline void writesp(ll x){write(x); putchar(' ');}
int f[][(<<)+],g[][(<<)+];
int cnt[(<<)+],inv[];
int x[],y[];
int n,m;
inline ll power(ll a,ll b)
{
ll ans=;
for(;b;b>>=,a=a*a%mod)
if(b&)ans=ans*a%mod;
return ans;
}
inline void fwt(int* a,int n)
{
for(int i=;i<n;i<<=)
for(int j=;j<n;j+=(i<<))
for(int k=j;k<j+i;k++)
a[k+i]=Mod1(a[k+i]+a[k]);
}
inline void ifwt(int* a,int n)
{
for(int i=;i<n;i<<=)
for(int j=;j<n;j+=(i<<))
for(int k=j;k<j+i;k++)
a[k+i]=Mod2(a[k+i]-a[k]);
}
int main()
{
n=read(); m=read();
for(int i=;i<m;i++)
x[i]=read()-,y[i]=read()-;
for(int i=;i<<<n;i++)
cnt[i]=cnt[i>>]+(i&);
for(int i=;i<<<n;i++){
int tot=;
for(int j=;j<m;j++)
if((i&(<<x[j]))&&(i&(<<y[j])))++tot;
f[cnt[i]][i]=power(,tot);
}
for(int i=;i<=n;i++)
fwt(f[i],<<n);
for(int i=;i<=n;i++)
inv[i]=power(i,mod-);
for(int i=;i<=n;i++){\\求ln
for(int k=;k<i;k++)
for(int j=;j<<<n;j++)
g[i][j]=(g[i][j]+(ll)k*g[k][j]%mod*f[i-k][j])%mod;
for(int j=;j<<<n;j++)
g[i][j]=(f[i][j]+(ll)(mod-inv[i])*g[i][j])%mod;
}
memset(f,,sizeof(f));
for(int i=;i<<<n;i++)
f[][i]=;
for(int i=;i<=n;i++)\\求逆
for(int k=;k<i;k++)
for(int j=;j<<<n;j++)
f[i][j]=(f[i][j]+(ll)f[k][j]*g[i-k][j])%mod;
ifwt(f[n],<<n);
writeln(f[n][(<<n)-]);
return ;
}

uoj94

【uoj#94】【集训队互测2015】胡策的统计(集合幂级数)的更多相关文章

  1. 【集训队互测2015】Robot

    题目描述 http://uoj.ac/problem/88 题解 维护两颗线段树,维护最大值和最小值,因为每次只有单点查询,所以可以直接在区间插入线段就可以了. 注意卡常,不要写STL,用链表把同类修 ...

  2. BZOJ3938 & UOJ88:[集训队互测2015]Robot——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3938 http://uoj.ac/problem/88 小q有n只机器人,一开始他把机器人放在了一 ...

  3. 【loj2461】【2018集训队互测Day 1】完美的队列

    #2461. 「2018 集训队互测 Day 1」完美的队列 传送门: https://loj.ac/problem/2461 题解: 直接做可能一次操作加入队列同时会弹出很多数字,无法维护:一个操作 ...

  4. 【2018集训队互测】【XSY3372】取石子

    题目来源:2018集训队互测 Round17 T2 题意: 题解: 显然我是不可能想出来的……但是觉得这题题解太神了就来搬(chao)一下……Orzpyz! 显然不会无解…… 为了方便计算石子个数,在 ...

  5. 洛谷 P4463 - [集训队互测 2012] calc(多项式)

    题面传送门 & 加强版题面传送门 竟然能独立做出 jxd 互测的题(及其加强版),震撼震撼(((故写题解以祭之 首先由于 \(a_1,a_2,\cdots,a_n\) 互不相同,故可以考虑求出 ...

  6. UOJ#191. 【集训队互测2016】Unknown

    题意:维护一个数列,每个元素是个二维向量,每次可以在后面加一个元素或者删除一个元素.给定P(x,y),询问对于[l,r]区间内的元素$S_i$,$S_i \times P$的最大值是多少. 首先简单地 ...

  7. UOJ#191. 【集训队互测2016】Unknown 点分治 分治 整体二分 凸包 计算几何

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ191.html 题目传送门 - UOJ191 题意 自行移步集训队论文2016中罗哲正的论文. 题解 自行 ...

  8. uoj #190. 【集训队互测2016】消失的源代码 提交答案题

    Test 1: 发现是一个字母表的映射 把 \('a' \to 'z'\) 打进去找出映射就好了QAQ . Test 2: 求助 \(dalao\) 得知的点.. 答案是 : \(2016x^2 + ...

  9. LOJ3069. 「2019 集训队互测 Day 1」整点计数(min_25筛)

    题目链接 https://loj.ac/problem/3069 题解 复数真神奇. 一句话题意:令 \(f(x)\) 表示以原点 \((0, 0)\) 为圆心,半径为 \(x\) 的圆上的整点数量, ...

随机推荐

  1. 深入理解Flink ---- Metrics的内部结构

    从Metrics的使用说起 Flink的Metrics种类有四种Counters, Gauges, Histograms和Meters. 如何使用Metrics呢? 以Counter为例, publi ...

  2. 无法登录到Windows云服务器怎么办?

    当您的云服务器无法远程登录时,我们首先建议您使用VNC方式登录. 是否可以通过控制台远程登录 远程登录失败时,请首先尝试能否通过管理控制台,使用VNC方式登录弹性云服务器. 登录管理控制台. 选择“计 ...

  3. es6 是否包含字符串判断

    字符串查找类 接下来介绍一些可以通过 ES5 PolyFill的方法,但是现在 ES6 原生实现了 Method Param Return Description includes() 需要验证是否被 ...

  4. golang struct组合,转型问题请教

    type Action interface { OnHurt2(other Action) GetDamage() int } type Base struct { atk, hp int } fun ...

  5. 初学django框架 (urls,include子路由,render模板渲染)(一)

    一.urls url的使用为了告诉django哪个url调用那一段代码 如上左图所示,后面的test,test1如下图所示,为视图函数,通过前面的路径,调用后面函数的代码: 只有输入正确的url才会在 ...

  6. Bootstrap 表单示例

    1.打开https://getbootstrap.com/docs/4.3/examples/checkout/复制表单源码 2.清空main标签内容 3.粘贴表单源码 4.示例图

  7. VSCode插件Prettier配置

    参考链接:https://blog.csdn.net/wengou3033/article/details/88749448 Prettier格式化配置

  8. C#进阶系列—WebApi

    参考学习优秀博客地址:http://www.cnblogs.com/landeanfen/p/5177176.html

  9. HDU3191 【输出次短路条数】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3191 How Many Paths Are There Time Limit: 2000/1000 M ...

  10. [LuoguP2164][SHOI2007]交通网络_拓扑排序_概率期望

    交通网络 题目链接:https://www.luogu.org/problemnew/solution/P2164 数据范围:略. 题解: 直接算不好算,我们考虑建反图然后$Toposort$. 这样 ...