基本PSO算法实现(Java)
一.算法流程
Step1:初始化一群粒子(粒子个数为50个),包括随即位置和速度;
Step2:计算每个粒子的适应度fitness;
Step3:对每个粒子,将其适应度与其进过的最好位置(局部)pbest做比较,如果较好,则将其作为当前的最好位置pbest;
Step4:对每个粒子,将其将其适应值与群体所经过的最好位置gbest做比较,如果较好,则将其作为当前最好位置gbest;
Step5:更新所有粒子位置和速度;
Step6:未达到结束条件则转Step2。
二.实验设置
(1) 粒子数particle_num=20;
(2) 迭代次数N=50;
(3) 惯性因子w=1.4;
(4) c1=c2=2;
(5) 最大速度Vmax=2。
三.实验说明
PSO维基:https://en.wikipedia.org/wiki/Particle_swarm_optimization
目标函数:https://en.wikipedia.org/wiki/Test_functions_for_optimization 中的Ackley's function、Sphere function、和Rosenbrock function(都是求最小值)
完整代码见我的github:https://github.com/wqpod2g/PSO
四.java代码
1.particle类
package nju.iip; import java.util.Random; /**
* 粒子类
* @author mrpod2g
*
*/
public class Particle {
//维数
public int dimension = 2; //粒子的位置
public double[] X = new double[dimension]; //局部最好位置
public double[] pbest = new double[dimension]; //粒子的速度
public double[] V = new double[dimension]; //最大速度
public double Vmax = 2; //适应值
public double fitness; /**
* 根据当前位置计算适应值
* @return newFitness
*/
public double calculateFitness() {
//1.Ackley's function:
//double newFitness = -20*Math.pow(Math.E,(-0.2*Math.sqrt(0.5*(X[0]*X[0]+X[1]*X[1]))))-Math.pow(Math.E,(0.5*(Math.cos(2*Math.PI*X[0])+Math.cos(2*Math.PI*X[1]))))+Math.E+20; //2.Sphere function
//double newFitness = X[0]*X[0]+X[1]*X[1]; //3.Rosenbrock function
double newFitness = 100*(Math.pow((X[1]-X[0]*X[0]),2))+Math.pow((X[0]-1), 2); return newFitness;
} /**
* 初始化自己的位置和pbest
*/
public void initialX() {
for(int i=0;i<dimension;i++) {
X[i] = new Random().nextInt(100);
pbest[i] = X[i];
}
} /**
* 初始化自己的速度
*/
public void initialV() {
for(int i=0;i<dimension;i++) {
double tmp = new Random().nextDouble();//随机产生一个0~1的随机小数
V[i] = tmp*4+(-2);
}
} }
2.PSO算法实现过程
package nju.iip; import java.util.ArrayList;
import java.util.List;
import java.util.Random;
/**
* PSO算法实现
* @author mrpod2g
*
*/
public class PSO { private static double[] gbest;//全局最优位置 private static double gbest_fitness = Double.MAX_VALUE;//全局最优位置对应的fitness private static int particle_num = 20;//粒子数 private static int N = 50;//迭代次数 private static int c1,c2 = 2; private static double w = 1.4;//惯性因子 private static List<Particle> particles = new ArrayList<Particle>();//粒子群 /**
* 初始化所有粒子
*/
public static void initialParticles() {
for(int i=0;i<particle_num;i++) {
Particle particle = new Particle();
particle.initialX();
particle.initialV();
particle.fitness = particle.calculateFitness();
particles.add(particle);
}
} /**
* update gbest
*/
public static void updateGbest() {
double fitness = Double.MAX_VALUE;
int index = 0;
for(int i=0;i<particle_num;i++) {
if(particles.get(i).fitness<fitness) {
index = i;
fitness = particles.get(i).fitness;
}
}
if(fitness<gbest_fitness) {
gbest = particles.get(index).pbest.clone();
gbest_fitness = fitness;
}
} /**
* 跟新每个粒子的速度
*/
public static void updateV() {
for(Particle particle:particles) {
for(int i=0;i<particle.dimension;i++) {
double v = w*particle.V[i]+c1*rand()*(particle.pbest[i]-particle.X[i])+c2*rand()*(gbest[i]-particle.X[i]);
if(v>particle.Vmax)
v = particle.Vmax;
else if(v<-particle.Vmax)
v = -particle.Vmax;
particle.V[i] = v;//更新Vi
}
}
} /**
* 更新每个粒子的位置和pbest
*/
public static void updateX() {
for(Particle particle:particles) {
for(int i=0;i<particle.dimension;i++) {
particle.X[i] = particle.X[i] + particle.V[i];
}
double newFitness = particle.calculateFitness();//新的适应值
//如果新的适应值比原来的小则跟新fitness和pbest
if(newFitness<particle.fitness) {
particle.pbest = particle.X.clone();
particle.fitness = newFitness;
}
}
} /**
* 算法主要流程
*/
public static void process() {
int n = 0;
initialParticles();
updateGbest();
while(n++<N) {
updateV();
updateX();
updateGbest();
System.out.println(n+".当前gbest:("+gbest[0]+","+gbest[1]+") fitness="+gbest_fitness);
}
} /**
* 返回一个0~1的随机数
* @return
*/
public static double rand() {
return new Random().nextDouble();
} public static void main(String[] args) {
process();
} }
基本PSO算法实现(Java)的更多相关文章
- 粒子群优化算法及其java实现
憋了两周终于把开题报告憋出来了,再一次证明自己不适合搞学术,哎--,花了点时间把报告中提到的粒子群算法看了看,看了些资料,用java跑起来. 算法简介 粒子群算法最先由Barnhart博士和Kenne ...
- 对一致性Hash算法,Java代码实现的深入研究
一致性Hash算法 关于一致性Hash算法,在我之前的博文中已经有多次提到了,MemCache超详细解读一文中"一致性Hash算法"部分,对于为什么要使用一致性Hash算法.一致性 ...
- 常见排序算法(附java代码)
常见排序算法与java实现 一.选择排序(SelectSort) 基本原理:对于给定的一组记录,经过第一轮比较后得到最小的记录,然后将该记录与第一个记录的位置进行交换:接着对不包括第一个记录以外的其他 ...
- 几大排序算法的Java实现
很多的面试题都问到了排序算法,中间的算法和思想比较重要,这边我选择了5种常用排序算法并用Java进行了实现.自己写一个模板已防以后面试用到.大家可以看过算法之后,自己去实现一下. 1.冒泡排序:大数向 ...
- 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,循环控制及其优化
上两篇博客 8皇后以及N皇后算法探究,回溯算法的JAVA实现,递归方案 8皇后以及N皇后算法探究,回溯算法的JAVA实现,非递归,数据结构“栈”实现 研究了递归方法实现回溯,解决N皇后问题,下面我们来 ...
- 7种基本排序算法的Java实现
7种基本排序算法的Java实现 转自我的Github 以下为7种基本排序算法的Java实现,以及复杂度和稳定性的相关信息. 以下为代码片段,完整的代码见Sort.java 插入排序 /** * 直接插 ...
- 利用朴素贝叶斯算法进行分类-Java代码实现
http://www.crocro.cn/post/286.html 利用朴素贝叶斯算法进行分类-Java代码实现 鳄鱼 3个月前 (12-14) 分类:机器学习 阅读(44) 评论(0) ...
- 【LeetCode-面试算法经典-Java实现】【053-Maximum Subarray(最大子数组和)】
[053-Maximum Subarray(最大子数组和)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Find the contiguous subarray w ...
- 一致性hash算法及java实现
一致性hash算法是分布式中一个常用且好用的分片算法.或者数据库分库分表算法.现在的互联网服务架构中,为避免单点故障.提升处理效率.横向扩展等原因,分布式系统已经成为了居家旅行必备的部署模式,所以也产 ...
随机推荐
- Mediawiki 子页链接无效的问题
添加下面的配置到 LocalSettings.php 中即可: # Enable subpages in the main namespace $wgNamespacesWithSubpages[NS ...
- Java 面向对象(五)抽象
一.抽象概述 1.由来 父类中的方法,被它的子类们重写,子类各自的实现都不尽相同.那么父类的方法声明和方法主体,只有声明还有意义,而方法主体则没有存在的意义了. 我们把没有方法主体的方法称为抽象方法. ...
- Python模拟登陆某网教师教育网
本文转载自看雪论坛[作者]rdsnow 不得不说,最近的 Python 蛮火的,我也稍稍了解了下,并试着用 Python 爬取网站上的数据 不过有些数据是要登陆后才能获取的,我们每年都要到某教师教育网 ...
- 映射重复导致的错误:Ambiguous handler methods mapped for HTTP path
转自:https://cloud.tencent.com/developer/article/1372150 出现了两个名称一样的映射,会报如下错误: 原因: 解决方法: 出现Ambiguous Ma ...
- Ubuntu 远程管理常用命令
目标 关机/重启 shutdown 查看或配置网卡信息 ifconfig ping 远程登录和复制文件 ssh scp 01. 关机/重启 序号 命令 对应英文 作用 01 shutdown 选项 时 ...
- git日常命令
克隆项目:git clone addr dir 切换分支,分支并没有 git checkout -b production origin/production 分支已存在,单纯切换分支 git che ...
- LVS、nginx、Haproxy对比(详细)
目录 代理软件 负载均衡产品介绍 haproxy 本文档参考 http://www.ha97.com/5646.html 代理软件 负载均衡产品介绍 市面上的负载均衡产品主要分为两种:硬件产品和软件产 ...
- 【转】5种网络IO模型
5种网络IO模型(有图,很清楚) IO多路复用—由Redis的IO多路复用yinch Linux中对文件描述符的操作(FD_ZERO.FD_SET.FD_CLR.FD_ISSET
- 安装sass时遇到Failed to build gem native extension
错误信息 执行命令: sudo gem install sass时遇到下面的错误信息 Building native extensions. This could take a while... ER ...
- 用js刷剑指offer(包含min函数的栈)
题目描述 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1)). 牛客网链接 js代码 const stack1 = [] const stack2 = ...