SPOJ - VLATTICE
题意:三维平面,找从(0,0,0)看(n,n,n)能看到的点
题解:很明显就是求gcd(i,j,k)==1的(i,j,k)对数,改一下公式即可,记得要算平行坐标轴的三个平面,还有含0的三个坐标
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pii pair<int,int>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f; int mu[N],prime[N],sum[N];
bool mark[N];
void init()
{
mu[]=;
int cnt=;
for(int i=;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-;
for(int j=;j<=cnt;j++)
{
int t=i*prime[j];
if(t>N)break;
mark[t]=;
if(i%prime[j]==){mu[t]=;break;}
else mu[t]=-mu[i];
}
}
for(int i=;i<N;i++)sum[i]=sum[i-]+mu[i];
}
int main()
{
init();
int t,cnt=;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
ll ans=;
for(int i=,last;i<=n;i=last+)
{
last=n/(n/i);
ans+=(ll)(sum[last]-sum[i-])*(n/i)*(n/i)*(n/i);
ans+=(ll)(sum[last]-sum[i-])*(n/i)*(n/i)*;
}
printf("%lld\n",ans+);
}
return ;
}
/******************** ********************/
SPOJ - VLATTICE的更多相关文章
- SPOJ—VLATTICE Visible Lattice Points(莫比乌斯反演)
http://www.spoj.com/problems/VLATTICE/en/ 题意: 给一个长度为N的正方形,从(0,0,0)能看到多少个点. 思路:这道题其实和能量采集是差不多的,只不过从二维 ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3
http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...
- SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)
Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...
- SPOJ VLATTICE (莫比乌斯反演)
传送门:https://www.spoj.com/problems/VLATTICE/en/ 题意: 在三维坐标系下,你在点(0,0,0),看的范围是(n,n,n)以内,求你可以看见多少个点没有被遮挡 ...
- [SPOJ VLATTICE]Visible Lattice Points 数论 莫比乌斯反演
7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N lattice. One corner is at (0,0, ...
- SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演
这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...
- SPOJ VLATTICE(莫比乌斯反演)
题意: 在一个三维空间中,已知(0,0,0)和(n,n,n),求从原点可以看见多少个点 思路: 如果要能看见,即两点之间没有点,所以gcd(a,b,c) = 1 /*来自kuangbi ...
- Visible Lattice Points SPOJ - VLATTICE 三维+莫比乌斯反演
#include<bits/stdc++.h> #define ll long long using namespace std; ; int vis[maxn]; int mu[maxn ...
- SPOJ VLATTICE - Visible Lattice Points 【“小”大数加减】
题目链接 一道比较简单的莫比乌斯反演,不过ans会爆long long,我是用结构体来存结果的,结构体中两个LL型变量分别存大于1e17和小于1e17的部分 #include<bits/stdc ...
随机推荐
- 2015-03-22——js常用的String方法
String string.charAt(pos); //返回字符串中pos位置处的字符.如果pos小于0或大于等于string.length返回空字符串.模拟实现:Function.prototy ...
- windows 键盘全局钩子
// HookapiTest.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <Windows.h> #inc ...
- threading模块、ThreadLocal
一.threading模块 1.线程对象的创建 1.1 Thread类直接创建 import threading import time def countNum(n): # 定义某个线程要运行的函数 ...
- Andrew Ng机器学习编程作业:Support Vector Machines
作业: machine-learning-ex6 1. 支持向量机(Support Vector Machines) 在这节,我们将使用支持向量机来处理二维数据.通过实验将会帮助我们获得一个直观感受S ...
- Python高级教程-切片
Python中的切片 取一个list或tuple的部分元素是非常常见的操作.比如,一个list如下: >>> L = ['A','B','C','D'] 对经常取指定索引范围的操作, ...
- C++之(::)运算符详解
::运算符 (::)是运算符中等级最高的,作用有三种,都是左关联的,都是为了更明确自己调用的对象或者函数: 全局作用域 类作用域 命名空间作用域 1.全局作用域 #include<iostrea ...
- android studio上传项目到github报错Successfully created project 'Demo' on GitHub, but initial commit failed:
今天博主正在愉快地学习在AndroidStudio中使用Git,结果报了下面这个错∑(っ°Д°;)っ: Can't finish GitHub sharing process Successfully ...
- Ionic上滑刷新
上拉加载用的是ionic控件ion-infinite-scroll,使用示例如下: <ion-infinite-scroll (ionInfinite)="doInfinite($ev ...
- 移动app自动化测试
原文出处https://www.toutiao.com/i6473606106970063374/ 原文作者是今日头条的:一个字头的诞生 在此感谢原文作者的无私分享! 移动App自动化测试(一) 目前 ...
- beego——session控制
beego内置了session模块,目前session模块支持的后端引擎包括memory.cookie.file.mysql.redis.couchbase.memcache.postgres, 用户 ...