贪吃蛇的经典玩法有两种:

  1. 积分闯关
  2. 一吃到底

第一种是笔者小时候在掌上游戏机最先体验到的(不小心暴露了年龄),具体玩法是蛇吃完一定数量的食物后就通关,通关后速度会加快;第二种是诺基亚在1997年在其自家手机上安装的游戏,它的玩法是吃到没食物为止。笔者要实现的就是第二种玩法。

MVC设计模式

基于贪吃蛇的经典,笔者在实现它时也使用一种经典的设计模型:MVC(即:Model - View - Control)。游戏的各种状态与数据结构由 Model 来管理;View 用于显示 Model 的变化;用户与游戏的交互由 Control 完成(Control 提供各种游戏API接口)。

Model 是游戏的核心也是本文的主要内容;View 会涉及到部分性能问题;Control 负责业务逻辑。 这样设计的好处是: Model完全独立,View 是 Model 的状态机,Model 与 View 都由 Control 来驱动。

Model

看一张贪吃蛇的经典图片。

web前端/H5/javascript学习群:733581373

欢迎关注此公众号→【web前端EDU】跟大佬一起学前端!欢迎大家留言讨论一起转发

贪吃蛇有四个关键的参与对象:

  1. 蛇(snake)
  2. 食物(food)
  3. 墙(bounds)
  4. 舞台(zone)

舞台是一个 m * n 的矩阵(二维数组),矩阵的索引边界是舞台的墙,矩阵上的成员用于标记食物和蛇的位置。

空舞台如下:

[
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
]

食物(F)和蛇(S)出现在舞台上:

[
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,F,0,0,0,0,0,0,0],
[0,0,0,S,S,S,S,0,0,0],
[0,0,0,0,0,0,S,0,0,0],
[0,0,0,0,S,S,S,0,0,0],
[0,0,0,0,S,0,0,0,0,0],
[0,0,0,0,S,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
]

由于操作二维数组不如一维数组方便,所以笔者使用的是一维数组, 如下:

[
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,F,0,0,0,0,0,0,0,
0,0,0,S,S,S,S,0,0,0,
0,0,0,0,0,0,S,0,0,0,
0,0,0,0,S,S,S,0,0,0,
0,0,0,0,S,0,0,0,0,0,
0,0,0,0,S,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,
]

舞台矩阵上蛇与食物只是舞台对二者的映射,它们彼此都有独立的数据结构:

  • 蛇是一串坐标索引链表;
  • 食物是一个指向舞台坐标的索引值。

蛇的活动

蛇的活动有三种,如下:

  • 移动(move)
  • 吃食(eat)
  • 碰撞(collision)

移动

蛇在移动时,内部发生了什么变化?

蛇链表在一次移动过程中做了两件事:向表头插入一个新节点,同时剔除表尾一个旧节点。用一个数组来代表蛇链表,那么蛇的移动就是以下的伪代码:

function move(next) {
snake.pop() & snake.unshift(next);
}

数组作为蛇链表合适吗? 这是笔者最开始思考的问题,毕竟数组的 unshift & pop 可以无缝表示蛇的移动。不过,方便不代表性能好,unshift 向数组插入元素的时间复杂度是 O(n), pop 剔除数组尾元素的时间复杂度是 O(1)。

蛇的移动是一个高频率的动作,如果一次动作的算法复杂度为 O(n) 并且蛇的长度比较大,那么游戏的性能会有问题。笔者想实现的贪吃蛇理论上讲是一条长蛇,所以笔者在本文章的回复是 ------ 数组不适合作为蛇链表。

蛇链表必须是真正的链表结构。 链表删除或插入一个节点的时间复杂度为O(1),用链表作为蛇链表的数据结构能提高游戏的性能。javascript 没有现成的链表结构,笔者写了一个叫 Chain 的链表类,Chain 提供了 unshfit & pop。以下伪代码是创建一条蛇链表:

let snake = new Chain(); 

吃食 & 碰撞

「吃食」与「碰撞」区别在于吃食撞上了「食物」,碰撞撞上了「墙」。笔者认为「吃食」与「碰撞」属于蛇一次「移动」的三个可能结果的两个分支。蛇移动的三个可能结果是:「前进」、「吃食」和「碰撞」。

回头看一下蛇移动的伪代码:

function move(next) {
snake.pop() & snake.unshift(next);
}

代码中的 next 表示蛇头即将进入的格子的索引值,只有当这个格子是0时蛇才能「前进」,当这个格子是 S 表示「碰撞」自己,当这个格子是 F表示吃食。

好像少了撞墙? 笔者在设计过程中,并没有把墙设计在舞台的矩阵中,而是通过索引出界的方式来表示撞墙。简单地说就是 next === -1 时表示出界和撞墙。

以下伪代码表示蛇的整上活动过程:

// B 表示撞墙
let cell = -1 === next ? B : zone[next];
switch(cell) {
// 吃食
case F: eat(); break;
// 撞到自己
case S: collision(S); break;
// 撞墙
case B: collision(B): break;
// 前进
default: move;
}

随机投食

随机投食是指随机挑选舞台的一个索引值用于映射食物的位置。这似乎很简单,可以直接这样写:

// 伪代码
food = Math.random(zone.length) >> 0;

如果考虑到投食的前提 ------ 不与蛇身重叠,你会发现上面的随机代码并不能保证投食位置不与蛇身重叠。由于这个算法的安全性带有赌博性质,且把它称作「赌博算法」。为了保证投食的安全性,笔者把算法扩展了一下:

// 伪代码
function feed() {
let index = Math.random(zone.length) >> 0;
// 当前位置是否被占用
return zone[index] === S ? feed() : index;
}
food = feed();

上面的代码虽然在理论上可以保证投食的绝对安全,不过笔者把这个算法称作「不要命的赌徒算法」,因为上面的算法有致命的BUG ------ 超长递归 or 死循环。

为了解决上面的致命问题,笔者设计了下面的算法来做随机投食:

// 伪代码
function feed() {
// 未被占用的空格数
let len = zone.length - snake.length;
// 无法投食
if(len === 0) return ;
// zone的索引
let index = 0,
// 空格计数器
count = 0,
// 第 rnd 个空格子是最终要投食的位置
rnd = Math.random() * count >> 0 + 1;
// 累计空格数
while(count !== rnd) {
// 当前格子为空,count总数增一
zone[index++] === 0 && ++count;
}
return index - 1;
}
food = feed();

这个算法的平均复杂度为 O(n/2)。由于投食是一个低频操作,所以 O(n/2)的复杂度并不会带来任何性能问题。不过,笔者觉得这个算法的复杂度还是有点高了。回头看一下最开始的「赌博算法」,虽然「赌博算法」很不靠谱,但是它有一个优势 ------ 时间复杂度为 O(1)。

「赌博算法」的靠谱概率 = (zone.length - snake.length) / zone.length。snake.length 是一个动态值,它的变化范围是:0 ~ zone.length。推导出「赌博算法」的平均靠谱概率是:

「赌博算法」平均靠谱概率 = 50%

看来「赌博算法」还是可以利用一下的。于是笔者重新设计了一个算法:

// 伪代码
function bet() {
let rnd = Math.random() * zone.length >> 0;
return zone[rnd] === 0 ? rnd : -1;
}
function feed() {
...
}
food = bet();
if(food === -1) food = feed();

新算法的平均复杂度可以有效地降低到 O(n/4),人生有时候需要点运气 : )。

View

在 View 可以根据喜好选择一款游戏渲染引擎,笔者在 View 层选择了 PIXI 作为游戏游戏渲染引擎。

View 的任务主要有两个:

  1. 绘制游戏的界面;
  2. 渲染 Model 里的各种数据结构

也就是说 View 是使用渲染引擎还原设计稿的过程。本文的目的是介绍「贪吃蛇」的实现思路,如何使用一个渲染引擎不是本文讨论的范畴,笔者想介绍的是:「如何提高渲染的效率」。

在 View 中显示 Model 的蛇可以简单地如以下伪代码:

// 清空 View 上的蛇
view.snake.clean();
model.snake.forEach(
(node) => {
// 创建 View 上的蛇节点
let viewNode = createViewNode(node);
// 并合一条新蛇
view.snake.push(viewNode);
}
);

上面代码的时间复杂度是 O(n)。上面介绍过蛇的移动是一个高频的活动,我们要尽量避免高频率地运行 O(n) 的代码。来分析蛇的三种活动:「移动」,「吃食」,「碰撞」。

首先,Model 发生了「碰撞」,View 应该是直接暂停渲染 Model 里的状态,游戏处在死亡状态,接下来的事由 Control 处理。

Model 中的蛇(链表)在一次「移动」过程中做了两件事:向表头插入一个新节点,同时剔除表尾一个旧节点;蛇(链表)在一次「吃食」过程中只做一件事:向表头插入一个新节点。

如果在 View 中对 Model 的蛇链表做差异化检查,View 只增量更新差异部分的话,算法的时间复杂度即可降低至 O(1) ~ O(2) 。以下是优化后的伪代码:

let snakeA = model.snake, snakeB = view.snake;
// 增量更新尾部
while(snakeB.length <= snakeA.length) {
headA = snakeA.next();
// 头节点匹配
if(headA.data === headB.data) break;
// 不匹配
else {
// 向snakeB插入头节点
if(snakeA.HEAD === headA.index) {
snakeB.unshift(headA.data);
}
// 向snakeB插入第二个节点
else snakeB.insertAfter(0, headA.data);
}
}
// 增量更新头部
let tailA = snakeA.last(), tailB;
while(snakeB.length !== 0) {
tailB = snakeB.last();
// 尾节点匹配
if(tailA.data === tailB.data) break;
// 不匹配
else snakeB.pop();
}

Control

Control 主要做 3 件事:

  1. 游戏与用户的互动
  2. 驱动 Model
  3. 同步 View 与 Model

「游戏与用户的互动」是指向外提供游戏过程需要使用到的 APIs 与 各类事件。笔者规划的 APIs 如下:

name type deltail
init method 初始化游戏
start method 开始游戏
restart method 重新开始游戏
pause method 暂停
resume method 恢复
turn method 控制蛇的转向。如:turn("left")
destroy method 销毁游戏
speed property 蛇的移动速度

事件如下:

name detail
countdown 倒时计
eat 吃到食物
before-eat 吃到食物前触发
gameover 游戏结束

事件统一挂载在游戏实例下的 event 对象下。

snake.event.on("countdown", (time) => console.log("剩余时间:", time)); 

「驱动 Model 」只做一件事 ------ 将 Model 的蛇的方向更新为用户指定的方向。 「同步 View 与 Model 」也比较简单,检查 Model 是否有更新,如果有更新通知 View 更新游戏界面。

结语

想要贪吃蛇项目源码的加→

web前端/H5/javascript学习群:733581373

欢迎关注此公众号→【web前端学习圈】跟大佬一起学前端!欢迎大家留言讨论一起转发

H5游戏开发:贪吃蛇的更多相关文章

  1. 今天我看了一个H5游戏EUI的例子,我都快分不清我到底是在用什么语言编译了代码了,作为刚刚学习H5游戏开发的菜鸟只能默默的收集知识

    今天看了一个EUI的demo,也是接触H5游戏开发的第五天了,我想看看我能不能做点什么出来,哎,自己写果然还是有问题的.在看EUI哪一个demo的时候就遇见了一些摇摆不定的问题,我觉得提出来 1.to ...

  2. 最近这两天看了关于H5游戏开发的一个教程,实践很短暂,看了很多理论的东西,现在呢也只是想回忆回忆关于EUI的部分知识吧

    首先我了解了什么是Egret: Egret中文就是白鹭的意思,Egret是一套H5游戏开发的软件.(纯粹属于个人理解) 其次我对以下几款软件的相关知识做了些了解: Egret Engine(引擎),E ...

  3. JS小游戏:贪吃蛇(附源码)

    javascript小游戏:贪吃蛇 此小游戏采用的是面向对象的思想,将蛇,食物,和游戏引擎分为3个对象来写的. 为方便下载,我把js写在了html中, 源码中暂时没有注释,等有空我在添加点注释吧. 游 ...

  4. Python:游戏:贪吃蛇原理及代码实现

    一.游戏介绍 贪吃蛇是个非常简单的游戏,适合练手.先来看一下我的游戏截图: 玩法介绍:回车键:开始游戏空格键:暂停 / 继续↑↓←→方向键 或 WSAD 键:控制移动方向. 食物分红.绿.蓝三种,分别 ...

  5. 关于h5游戏开发,你想了解的一切都在这儿!

    ​2020年,受疫情影响,线下产业红利褪去,线上迎来的新一轮的高峰.众多商家纷纷抓住了转型时机,开启了流量争夺战.H5游戏定制无疑是今年引流的大热门.如何开发一款有趣.有爆点.用户爱买单的好游戏呢? ...

  6. 为什么选择H5游戏开发定制?

    为什么选择H5游戏开发定制? 随着微信H5游戏推广带来的显著效果,越来越多的商家已经加入到游戏营销的队伍中来, 对H5小游戏有了解的商家都知道,[模板游戏]的价格往往低于[定制游戏]的价格,可是为什么 ...

  7. 使用Love2D引擎开发贪吃蛇游戏

    今天来介绍博主近期捣腾的一个小游戏[贪吃蛇],贪吃蛇这个游戏相信大家都不会感到陌生吧.今天博主将通过Love2D这款游戏引擎来为大家实现一个简单的贪吃蛇游戏,在本篇文章其中我们将会涉及到贪吃蛇的基本算 ...

  8. 用Java开发贪吃蛇游戏

    贪吃蛇游戏的设计步骤: Part 1: 设计游戏图纸 画出900*700的白色窗口 在窗口上添加画布 在画布上添加标题 在画布上添加黑色游戏区 Part 2: 放置静态的蛇:一个头.两个身体 加上开始 ...

  9. H5游戏开发之抓住小恐龙

    第一次写技术性博文,以前都只是写一些生活感想,记录一些生活发生的事情. 博主大三学生一枚,目前学习JS一年多,还处于学习阶段,有什么说的不好的希望大牛指点下,由于第一次写博文,排版什么的有待改进,希望 ...

随机推荐

  1. C#学习目录处理

    目录获取和处理: string path = ".";//表明要在当前所在的目录 //先定义目录信息变量 DirectoryInfo dir = new DirectoryInfo ...

  2. Rsync+inotify自动同步数据

    一.简介 随着应用系统规模的不断扩大,对数据的安全性和可靠性也提出的更好的要求,rsync在高端业务系统中也逐渐暴露出了很多不足. 首先,rsync在同步数据时,需要扫描所有文件后进行比对,进行差量传 ...

  3. uva 1506 Largest Rectangle in a Histogram

    Largest Rectangle in a Histogram http://acm.hdu.edu.cn/showproblem.php?pid=1506 Time Limit: 2000/100 ...

  4. ASP.NET和ASP的区别是什么

    分析: ASP与ASP.NET是Microsoft公司在Web应用程序开发上的两项重要技术. ASP与ASP.NET区别如下: (1)开发语言不同:ASP的开发语言仅局限于使用non-type脚本语言 ...

  5. 【转】js JavaScript 的性能优化:加载和执行

    JavaScript 的性能优化:加载和执行 转自:https://www.ibm.com/developerworks/cn/web/1308_caiys_jsload/ 随着 Web2.0 技术的 ...

  6. Kubernetes: 集群网络配置 - flannel

    参考: [ Kubernetes 权威指南 ] Kubernetes 集群搭建可以参考 [ Kubernetes : 多节点 k8s 集群实践 ] 在多个 Node 组成的 Kubernetes 集群 ...

  7. HDU 1087 Super Jumping! Jumping! Jumping! --- DP入门之最大上升子序列

    题目链接 DP基础题 求的是上升子序列的最大和 而不是最长上升子序列LIS DP[i]表示以a[i]结尾所能得到的最大值 但是a[n-1]不一定是整个序列能得到的最大值 #include <bi ...

  8. 2017ACM暑期多校联合训练 - Team 1 1001 HDU 6033 Add More Zero (数学)

    题目链接 Problem Description There is a youngster known for amateur propositions concerning several math ...

  9. 浅谈JobExecutionContext与JobDataMap

    1.JobExecutionContext简介 (1)当Scheduler调用一个Job,就会将JobExecutionContext传递给job的execute方法 quartz无法调用job的有参 ...

  10. Python3 PyPAML 模块(配置文件的操作)

    YAML 是专门用来写配置文件的语言,非常简洁和强大 它的基本语法规则如下: 1.大小写敏感 2.使用缩进表示层级关系 3.缩进时不允许使用Tab键,只允许使用空格. 4.缩进的空格数目不重要,只要相 ...