Graph is an important data structure and has many important applications. Moreover, grach traversal is key to many graph algorithms. There are two systematic ways to traverse a graph, breadth-first search (BFS) and depth-frist search (DFS).

Before focusing on graph traversal, we first determine how to represent a graph. In fact, there are mainly two ways to represent a graph, either using adjacency lists or adjacency matrix.

An adjacency list is an array of lists. Each list corresponds to a node of the graph and stores the neighbors of that node.

For example, for the (undirected) graph above, its representation using adjacency lists can be:

0: 1 -> 3 -> NULL

1: 0 -> 2 -> NULL

2: 1 -> NULL

3: 0 -> 4 -> 5 -> NULL

4: 3 -> 5 -> 6 -> NULL

5: 3 -> 4 -> 6 -> 7 -> NULL

6: 4 -> 5 -> 7 -> NULL

7: 5 -> 6 -> NULL

An adjacency matrix is a matrix of size m by m (m is the number of nodes in the graph) and the (i, j)-the element of the matrix represents the edge from node i to node j.

For the same graph above, its representation using adjacency matrix is:

0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0

0 0 0 1 0 1 1 0

0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

In this passage, we use adjacency lists to represent a graph. Specifically, we define the node of the graph to be the following structure:

 struct GraphNode {
int label;
vector<GraphNode*> neighbors;
GraphNode(int _label) : label(_label) {}
};

Now let's move on to BFS and DFS.

As suggested by their names, BFS will first visit the current node, then its neighbors, then the non-visited neighbors of its neighbors... and so on in a breadth-first manner while DFS will try to move as far as possible from the current node and backtrack when it cannot move forward any more (all the neighbors of the current node has been visited).

The implementation of BFS requries the use of the queue data structure while the implementation of DFS can be done in a recursive manner.

For more details on BFS and DFS, you may refer to Introduction to Algorithms or these two nice videos: BFS video and DFS video.

In my implementation, BFS starts from a single node and visits all the nodes reachable from it and returns a sequence of visited nodes. However, DFS will try to start from every non-visited node in the graph and starts from that node and obtains a sequence of visited nodes for each starting node. Consequently, the function bfs returns a vector<GraphNode*> while the function dfs returns a vector<vector<GraphNode*> >.

I also implement a function read_graph to input the graph manually. For the above graph, you first need to input its number of nodes and number of edges. Then you will input each of its edge in the form of "0 1" (edge from node 0 to node 1).

The final code is as follows.

 #include <iostream>
#include <vector>
#include <queue>
#include <unordered_set> using namespace std; struct GraphNode {
int label;
vector<GraphNode*> neighbors;
GraphNode(int _label) : label(_label) {}
}; vector<GraphNode*> read_graph(void) {
int num_nodes, num_edges;
scanf("%d %d", &num_nodes, &num_edges);
vector<GraphNode*> graph(num_nodes);
for (int i = ; i < num_nodes; i++)
graph[i] = new GraphNode(i);
int node, neigh;
for (int i = ; i < num_edges; i++) {
scanf("%d %d", &node, &neigh);
graph[node] -> neighbors.push_back(graph[neigh]);
graph[neigh] -> neighbors.push_back(graph[node]);
}
return graph;
} vector<GraphNode*> bfs(vector<GraphNode*>& graph, GraphNode* start) {
vector<GraphNode*> nodes;
queue<GraphNode*> toVisit;
unordered_set<GraphNode*> visited;
toVisit.push(start);
visited.insert(start);
while (!toVisit.empty()) {
GraphNode* cur = toVisit.front();
toVisit.pop();
nodes.push_back(cur);
for (GraphNode* neigh : cur -> neighbors) {
if (visited.find(neigh) == visited.end()) {
toVisit.push(neigh);
visited.insert(neigh);
}
}
}
return nodes;
} bool visitAllNeighbors(GraphNode* node, unordered_set<GraphNode*>& visited) {
for (GraphNode* n : node -> neighbors)
if (visited.find(n) == visited.end())
return false;
return true;
} void dfs_visit(vector<GraphNode*>& graph, GraphNode* node, \
unordered_set<GraphNode*>& visited, vector<GraphNode*>& tree, \
vector<vector<GraphNode*> >& forest) {
visited.insert(node);
tree.push_back(node);
if (visitAllNeighbors(node, visited)) {
forest.push_back(tree);
tree.clear();
return;
}
for (GraphNode* neigh : node -> neighbors)
if (visited.find(neigh) == visited.end())
dfs_visit(graph, neigh, visited, tree, forest);
} vector<vector<GraphNode*> > dfs(vector<GraphNode*>& graph) {
vector<GraphNode*> tree;
vector<vector<GraphNode*> > forest;
unordered_set<GraphNode*> visited;
for (GraphNode* node : graph)
if (visited.find(node) == visited.end())
dfs_visit(graph, node, visited, tree, forest);
return forest;
} void graph_test(void) {
vector<GraphNode*> graph = read_graph();
// BFS
printf("BFS:\n");
vector<GraphNode*> nodes = bfs(graph, graph[]);
for (GraphNode* node : nodes)
printf("%d ", node -> label);
printf("\n");
// DFS
printf("DFS:\n");
vector<vector<GraphNode*> > forest = dfs(graph);
for (vector<GraphNode*> tree : forest) {
for (GraphNode* node : tree)
printf("%d ", node -> label);
printf("\n");
}
} int main(void) {
graph_test();
system("pause");
return ;
}

If you input the above graph to it as follows (note that you only need to input each edge exactly once):


The output will be as follows:

 BFS:

 DFS:

You may check it manually and convince yourself of its correctness :)

[Algorithms] Graph Traversal (BFS and DFS)的更多相关文章

  1. Clone Graph leetcode java(DFS and BFS 基础)

    题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...

  2. [LeetCode] 785. Is Graph Bipartite?_Medium tag: DFS, BFS

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  3. BFS 、DFS 解决迷宫入门问题

    问题 B: 逃离迷宫二 时间限制: 1 Sec  内存限制: 128 MB提交: 12  解决: 5[提交][状态][讨论版] 题目描述 王子深爱着公主.但是一天,公主被妖怪抓走了,并且被关到了迷宫. ...

  4. BFS和DFS详解

    BFS和DFS详解以及java实现 前言 图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇<Get that job at Google!>文章中说到面试官问 ...

  5. 【数据结构与算法】自己动手实现图的BFS和DFS(附完整源码)

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/19617187 图的存储结构 本文的重点在于图的深度优先搜索(DFS)和广度优先搜索(BFS ...

  6. BFS与DFS常考算法整理

    BFS与DFS常考算法整理 Preface BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或 ...

  7. HDU-4607 Park Visit bfs | DP | dfs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 首先考虑找一条最长链长度k,如果m<=k+1,那么答案就是m.如果m>k+1,那么最 ...

  8. 算法录 之 BFS和DFS

    说一下BFS和DFS,这是个比较重要的概念,是很多很多算法的基础. 不过在说这个之前需要先说一下图和树,当然这里的图不是自拍的图片了,树也不是能结苹果的树了.这里要说的是图论和数学里面的概念. 以上概 ...

  9. hdu--1026--Ignatius and the Princess I(bfs搜索+dfs(打印路径))

    Ignatius and the Princess I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

随机推荐

  1. Android 4.4KitKat AudioFlinger 流程分析

    AudioFlinger(AF)是一个服务,具体的启动代码在av\media\mediaserver\Main_mediaserver.cpp中: int main(int argc, char** ...

  2. sql server使用sql插入中文字符串乱码问题

    在插入语句前加N就行了 sb.Append(string.Format("update chapter set [content]=N'{0}' where Id ={1} ;", ...

  3. 通过SectionIndexer实现微信通讯录

    这里主要参考了使用SectionIndexer实现微信通讯录的效果 在这里做个记录 效果图 页面使用RelativeLayout,主要分为三个部分,match_parent的主listView,右边字 ...

  4. php_memcahed 安装

    1.下载服务端memcached软件 32bit:下载 memcached-win32-1.4.4-14.zip(直接下)里面包含6个文件,将解压后的文件夹随便放在什么位置(例如:D:\wamp_wi ...

  5. 自定义 XIB subview的时候 为什么控件都是 空的

    http://blog.wtlucky.com/blog/2014/08/10/nested-xib-views/

  6. Atitit.index manager api design 索引管理api设计

    Atitit.index manager api design 索引管理api设计 1. kw 1 1.1. 索引类型 unique,normal,fulltxt 1 1.2. 聚集索引(cluste ...

  7. iOS开发 -李洪强-清除缓存

    // //  SetViewController.m //  dfhx // //  Created by dfhx_iMac_001 on 16/4/5. //  Copyright © 2016年 ...

  8. [转]ubuntu安装gcc

    Ubuntu缺省情况下,并没有提供C/C++的编译环境,因此还需要手动安装. 如果单独安装gcc以及g++比较麻烦,幸运的是,为了能够编译Ubuntu的内核,Ubuntu提供了一个build-esse ...

  9. js arguments 内置对象

    1.arguments是js的内置对象. 2.在不确定对象是可以用来重载函数. 3.用法如下: function goTo() { var i=arguments.length; alert(i); ...

  10. 在oschina添加了x3dom的索引

    http://www.x3dom.org/ http://www.oschina.net/p/x3dom x3dom的思路非常优秀并且可行,借助于WebGL的春风,将X3D带到了死而复生的境地.