1.伯努利分布:伯努利分布亦称“零一分布”、“两点分布”。称随机变量X有伯努利分布, 参数为p(0<p<1),如果它分别以概率p和1-p取1和0为值。EX= p,DX=p(1-p)。

2.

dropout其实也是一种正则化,因为也把参数变稀疏(l1,原论文)和变小(l2,caffe实际实现)。只有极少的训练样本可用时,Dropout不会很有效。因为Dropout是一个正则化技术,它减少了模 型的有效容量。为了抵消这种影响,我们必须增大模型规模。不出意外的话,使 用Dropout时较佳验证集的误差会低很多,但这是以更大的模型和更多训练算法的迭 代次数为代价换来的。对于非常大的数据集,正则化带来的泛化误差减少得很小。在 这些情况下,使用Dropout和更大模型的计算代价可能超过正则化带来的好处。http://www.dataguru.cn/article-10459-1.html

idea:想利用集成学习bagging的思想,通过训练多个不同的模型来预测结果。但是神经网络参数量巨大,训练和测试网络需要花费大量的时间和内存。

功能:1.解决过拟合

    2.加快训练速度

为什么呢work:

    1.dropout类似于多模型融合,多模型融合本身能解决解决一下过拟合

    因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络(随机删掉一半隐藏神经元导致网络结构已经不同),整个dropout过程就相当于 对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。https://zhuanlan.zhihu.com/p/23178423

    2.减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。(这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况)。 迫使网络去学习更加鲁棒的特征 (这些特征在其它的神经元的随机子集中也存在)。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的模式(鲁棒性)。(这个角度看 dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高)https://zhuanlan.zhihu.com/p/23178423

     3.正则化。让参数稀疏和让参数变小

     4.加噪声。观点十分明确,就是对于每一个dropout后的网络,进行训练时,相当于做了Data Augmentation,因为,总可以找到一个样本,使得在原始的网络上也能达到dropout单元后的效果。 比如,对于某一层,dropout一些单元后,形成的结果是(1.5,0,2.5,0,1,2,0),其中0是被drop的单元,那么总能找到一个样本,使得结果也是如此。这样,每一次dropout其实都相当于增加了样本。https://blog.csdn.net/stdcoutzyx/article/details/49022443

caffe的实现:

    论文中的实现:

          训练,用伯努利分布生成概率,以概率p打开,概率1-p关闭,打开就是直接把值正常传给下一层,关闭就是不进行正向传播,传给下一层的值是0

          测试,用伯努利分布分成概率,将每个权重乘以概率p进行衰减

         caffe实现:

          训练,用伯努利分布生成概率,以概率p打开,概率1-p关闭。打开的同时要乘以一个系数,相当于把权重放大。关闭还是和论文一样。

          测试,直接把上一层的数值传递给下一层,其实也可以直接不用这一层

      为什么要这么去实现:

    https://blog.csdn.net/u012702874/article/details/45030991解答了为什么要在测试的时候rescale,因为如果直接使用dropout丢弃,其实就是选择了其中的n*p个神经元,所有参数乘以p其实也就是相当于选择了n*p,数量级是至少是一样的

    至于caffe为什么要放大,https://stackoverflow.com/questions/50853538/caffe-why-dropout-layer-exists-also-in-deploy-testing这个也没能很好解释,只能说是等效的

      

前向传播:

    

    

反向传播(注意:不进行反向传播,其实只是不求梯度,把上一层的梯度直接传给下一层):

   如果进行反向传播,还是以概率p传播梯度,概率1-p不传梯度给下一层,也就是0

   如果不进行反向传播,直接把上一层的梯度传给下一层

  

dropout与bagging的关系:

    在Bagging的情况下,所有模型是独立 的。在Dropout的情况下,模型是共享参数的,其中每个模型继承的父神经网络参 数的不同子集。参数共享使得在有限可用的内存下代表指数数量的模型变得可能。 在Bagging的情况下,每一个模型在其相应训练集上训练到收敛。在Dropout的情况下,通常大部分模型都没有显式地被训练,通常该模型很大,以致到宇宙毁灭都不 能采样所有可能的子网络。取而代之的是,可能的子网络的一小部分训练单个步骤,参数共享导致剩余的子网络能有好的参数设定。这些是仅有的区别。除了这些,Dropout与Bagging算法一样。例如,每个子网络中遇到的训练集确实是替换采样的 原始训练集的一个子集。

    关于Dropout的一个重要见解是,通过随机行为训练网络并平均多个随机决定进 行预测,通过参数共享实现了Bagging的一种形式。

 

dropout总结的更多相关文章

  1. 在RNN中使用Dropout

    dropout在前向神经网络中效果很好,但是不能直接用于RNN,因为RNN中的循环会放大噪声,扰乱它自己的学习.那么如何让它适用于RNN,就是只将它应用于一些特定的RNN连接上.   LSTM的长期记 ...

  2. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  3. 正则化方法:L1和L2 regularization、数据集扩增、dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  4. 深度学习(dropout)

    other_techniques_for_regularization 随手翻译,略作参考,禁止转载 www.cnblogs.com/santian/p/5457412.html Dropout: D ...

  5. Deep learning:四十一(Dropout简单理解)

    前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural n ...

  6. 简单理解dropout

    dropout是CNN(卷积神经网络)中的一个trick,能防止过拟合. 关于dropout的详细内容,还是看论文原文好了: Hinton, G. E., et al. (2012). "I ...

  7. [转]理解dropout

    理解dropout 原文地址:http://blog.csdn.net/stdcoutzyx/article/details/49022443     理解dropout 注意:图片都在github上 ...

  8. [CS231n-CNN] Training Neural Networks Part 1 : parameter updates, ensembles, dropout

    课程主页:http://cs231n.stanford.edu/ ___________________________________________________________________ ...

  9. 正则化,数据集扩增,Dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  10. [Neural Networks] Dropout阅读笔记

    多伦多大学Hinton组 http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf 一.目的 降低overfitting的风险 二.原理 ...

随机推荐

  1. 在WPF中自定义控件

    一, 不一定需要自定义控件在使用WPF以前,动辄使用自定义控件几乎成了惯性思维,比如需要一个带图片的按钮,但在WPF中此类任务却不需要如此大费周章,因为控件可以嵌套使用以及可以为控件外观打造一套新的样 ...

  2. visual studio 安装与sqlserver 安装

    先sqlserver再visual studio ,避免安装目录重复(sqlserver 中包含一部分visual  而  visual studio 中也包含有部分sqlserver内容) 安装vi ...

  3. Java内存区域和对象的创建

    文章绝大部分内存摘抄自<深入理解Java虚拟机>,结合了小部分个人理解如果有什么错误,还望指出,如果涉及到侵权,联系博主,立马删除,再次感谢<深入理解Java虚拟机>的作者-周 ...

  4. 三个缓存数据库Redis、Memcache、MongoDB

    >>Memcached Memcached的优点:Memcached可以利用多核优势,单实例吞吐量极高,可以达到几十万QPS(取决于key.value的字节大小以及服务器硬件性能,日常环境 ...

  5. 反汇编调试Android

    https://code.google.com/p/android/issues/detail?id=73076 http://my.unix-center.net/~Simon_fu/?p=527 ...

  6. vsphere client 创建虚拟机 如何关联到本地iso文件

    问题:以前用过vmere 创建虚拟机,都要在虚拟机启动之前配置系统镜像文件,第一次使用vspere client时在创建虚拟机后,我就想着应该先配置,再启动,其实,非也,应该这样,先启动虚拟机,在点按 ...

  7. JBPM学习第6篇:通过Git导入项目

    1.登记到工作台 切换到目录: $SERVER_HOME/bin/ for Unix environment: ./standalone.shfor Windows environment: ./st ...

  8. 抽象工厂模式的C++、Java实现

    1.抽象工厂模式UML 图1. 抽象工厂模式的UML 2.C++实现 C++实现类图为: 图2. 抽象工厂模式的C++实现类图 其中,AbstractFactory的实现代码为: //抽象工厂类基类. ...

  9. Hello Activemq

    0. 如果永远是localhost 可能一直low下去 1.下载安装 activemq 1.1 从官网下载activemq.tar.gz 并上传(rz)到linux系统 并解压 tar zxvf /* ...

  10. new Date(年-月)时间是8点

    new Date('2018-02')获取的小时是8时解决new Date('2018-2')获取的小时是0时