Java并发包之闭锁/栅栏/信号量
二、同步工具类详解
1、Semaphore信号量:跟锁机制存在一定的相似性,semaphore也是一种锁机制,所不同的是,reentrantLock是只允许一个线程获得锁,而信号量持有多个许可(permits),允许多个线程获得许可并执行。可以用来控制同时访问某个特定资源的操作数量,或者同时执行某个指定操作的数量。
示例代码:
5 public class TIJ_semaphore {
6 public static void main(String[] args) {
7 ExecutorService exec = Executors.newCachedThreadPool();
8 final Semaphore semp = new Semaphore(5); // 5 permits
9
10 for (int index = 0; index < 20; index++) {
11 final int NO = index;
12 Runnable run = new Runnable() {
13 public void run() {
14 try {
// if 1 permit avaliable, thread will get a permits and go; if no permit avaliable, thread will block until 1 avaliable
15 semp.acquire();
16 System.out.println("Accessing: " + NO);
17 Thread.sleep((long) (10000);
18 semp.release();
19 } catch (InterruptedException e) {
20 }
21 }
22 };
23 exec.execute(run);
24 }
25 exec.shutdown();
26 }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
2、CountDownLatch闭锁:允许一个或多个线程一直等待,直到其他线程的操作执行完后再执行。CountDownLatch是通过一个计数器来实现的,计数器的初始值为线程的数量。每当一个线程完成了自己的任务后,计数器的值就会减1。当计数器值到达0时,它表示所有的线程已经完成了任务,然后在闭锁上等待的线程就可以恢复执行任务。
主要方法:
1. CountDownLatch.await():将某个线程阻塞住,直到计数器count=0才恢复执行。
2. CountDownLatch.countDown():将计数器count减1。
使用场景:
1. 实现最大的并行性:有时我们想同时启动多个线程,实现最大程度的并行性。例如,我们想测试一个单例类。如果我们创建一个初始计数为1的CountDownLatch,并让所有线程都在这个锁上等待,那么我们可以很轻松地完成测试。我们只需调用 一次countDown()方法就可以让所有的等待线程同时恢复执行。
2. 开始执行前等待n个线程完成各自任务:例如应用程序启动类要确保在处理用户请求前,所有N个外部系统已经启动和运行了。
3. 死锁检测:一个非常方便的使用场景是,你可以使用n个线程访问共享资源,在每次测试阶段的线程数目是不同的,并尝试产生死锁。
4. 计算并发执行某个任务的耗时。
示例代码:
public class CountDownLatchTest {
public void timeTasks(int nThreads, final Runnable task) throws InterruptedException{
final CountDownLatch startGate = new CountDownLatch(1);
final CountDownLatch endGate = new CountDownLatch(nThreads);
for(int i = 0; i < nThreads; i++){
Thread t = new Thread(){
public void run(){
try{
startGate.await();
try{
task.run();
}finally{
endGate.countDown();
}
}catch(InterruptedException ignored){
}
}
};
t.start();
}
long start = System.nanoTime();
System.out.println("打开闭锁");
startGate.countDown();
endGate.await();
long end = System.nanoTime();
System.out.println("闭锁退出,共耗时" + (end-start));
}
public static void main(String[] args) throws InterruptedException{
CountDownLatchTest test = new CountDownLatchTest();
test.timeTasks(5, test.new RunnableTask());
}
class RunnableTask implements Runnable{
@Override
public void run() {
System.out.println("当前线程为:" + Thread.currentThread().getName());
}
}
执行结果为:
打开闭锁
当前线程为:Thread-0
当前线程为:Thread-3
当前线程为:Thread-2
当前线程为:Thread-4
当前线程为:Thread-1
闭锁退出,共耗时1109195
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
3、CyclicBarrier栅栏:用于阻塞一组线程直到某个事件发生。所有线程必须同时到达栅栏位置才能继续执行下一步操作,且能够被重置以达到重复利用。而闭锁是一次性对象,一旦进入终止状态,就不能被重置。
示例代码:
public class CyclicBarrierTest {
private final CyclicBarrier barrier;
private final Worker[] workers;
public CyclicBarrierTest(){
int count = Runtime.getRuntime().availableProcessors();
this.barrier = new CyclicBarrier(count,
new Runnable(){
@Override
public void run() {
System.out.println("所有线程均到达栅栏位置,开始下一轮计算");
}
});
this.workers = new Worker[count];
for(int i = 0; i< count;i++){
workers[i] = new Worker(i);
}
}
private class Worker implements Runnable{
int i;
public Worker(int i){
this.i = i;
}
@Override
public void run() {
for(int index = 1; index < 3;index++){
System.out.println("线程" + i + "第" + index + "次到达栅栏位置,等待其他线程到达");
try {
//注意是await,而不是wait
barrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
return;
} catch (BrokenBarrierException e) {
e.printStackTrace();
return;
}
}
}
}
public void start(){
for(int i=0;i<workers.length;i++){
new Thread(workers[i]).start();
}
}
public static void main(String[] args){
new CyclicBarrierTest().start();
}
}
执行结果为:
线程0第1次到达栅栏位置,等待其他线程到达
线程1第1次到达栅栏位置,等待其他线程到达
线程2第1次到达栅栏位置,等待其他线程到达
线程3第1次到达栅栏位置,等待其他线程到达
所有线程均到达栅栏位置,开始下一轮计算
线程3第2次到达栅栏位置,等待其他线程到达
线程2第2次到达栅栏位置,等待其他线程到达
线程0第2次到达栅栏位置,等待其他线程到达
线程1第2次到达栅栏位置,等待其他线程到达
所有线程均到达栅栏位置,开始下一轮计算
Java并发包之闭锁/栅栏/信号量的更多相关文章
- Java并发包之闭锁/栅栏/信号量(转)
本文转自http://blog.csdn.net/u010942020/article/details/79352560 感谢作者 一.Java多线程总结: 描述线程的类:Runable和Thread ...
- java并发编程笔记3-同步容器&并发容器&闭锁&栅栏&信号量
一.同步容器: 1.Vector容器实现了List接口,Vector实际上就是一个数组,和ArrayList类似,但是Vector中的方法都是synchronized方法,即进行了同步措施.保证了线程 ...
- Java 并发包中的高级同步工具
Java 并发包中的高级同步工具 Java 中的并发包指的是 java.util.concurrent(简称 JUC)包和其子包下的类和接口,它为 Java 的并发提供了各种功能支持,比如: 提供了线 ...
- java并发包&线程池原理分析&锁的深度化
java并发包&线程池原理分析&锁的深度化 并发包 同步容器类 Vector与ArrayList区别 1.ArrayList是最常用的List实现类,内部是通过数组实现的, ...
- Java并发编程(您不知道的线程池操作), 最受欢迎的 8 位 Java 大师,Java并发包中的同步队列SynchronousQueue实现原理
Java_并发编程培训 java并发程序设计教程 JUC Exchanger 一.概述 Exchanger 可以在对中对元素进行配对和交换的线程的同步点.每个线程将条目上的某个方法呈现给 exchan ...
- 深入浅出Java并发包—CountDownLauch原理分析 (转载)
转载地址:http://yhjhappy234.blog.163.com/blog/static/3163283220135875759265/ CountDownLauch是Java并发包中的一个同 ...
- Java并发包源码学习系列:同步组件Semaphore源码解析
目录 Semaphore概述及案例学习 类图结构及重要字段 void acquire() 非公平 公平策略 void acquire(int permits) void acquireUninterr ...
- Java并发包源码学习之AQS框架(四)AbstractQueuedSynchronizer源码分析
经过前面几篇文章的铺垫,今天我们终于要看看AQS的庐山真面目了,建议第一次看AbstractQueuedSynchronizer 类源码的朋友可以先看下我前面几篇文章: <Java并发包源码学习 ...
- Java并发包源码学习之AQS框架(三)LockSupport和interrupt
接着上一篇文章今天我们来介绍下LockSupport和Java中线程的中断(interrupt). 其实除了LockSupport,Java之初就有Object对象的wait和notify方法可以实现 ...
随机推荐
- Sql Server 2014/2012/2008/2005 数据库还原出现 3154错误的解决办法
在Sql Server 数据库还原出现 3154错误 解决方法1:不要在数据库名字上点右键选择还原,而要是在根目录“数据库”三个字上点右键选择还原,然后再选择数据库,问题便可以解决,如果不行参照方法 ...
- java.lang.ClassCastException: org.springframework.web.filter.CharacterEncodingFilter cannot be cast
严重: Exception starting filter encodingFilterjava.lang.ClassCastException: org.springframework.web.fi ...
- JavaScript中对象的属性类型
JavaScript中,对象的属性有两种:数据属性和访问器属性. 数据属性 特性: 数据属性包括一个数据值的位置.在这个位置可以读取和写入值.数据属性有4个特性. [[configurable]]:可 ...
- 《java并发编程实战》读书笔记7--线程池的使用
第8章 线程池的使用 8.1 在任务与执行策略之间的隐性耦合 虽然Executor框架为制定和修改执行策略都提供了相当大的灵活性,但并非所有的任务都适用所有的执行策略.有些类型的任务需要明确地指明执行 ...
- ps -ef和ps aux的区别
ps -ef 是用标准格式(standard syntax)显示进程 ,ps aux 是用BSD格式(BSD syntax)来显示进程 ps -ef 结果如下: 部分含义如下: PPID //父进程I ...
- react与mox-react的shouldComponentUpdate 理解
react性能优化中,提到的就是通过 React.PureComponent 替换 React.Component 组件进行编程. 两个组件之间的不同主要就是PureComponent做了should ...
- AC日记——[SDOI2017]相关分析 洛谷 P3707
[SDOI2017]相关分析 思路: 裸线段树: (玄学ac): 代码: #include <bits/stdc++.h> using namespace std; #define max ...
- Djangp2.x版本报错找不到模版目录下的文件
1.报错内容:django.template.exceptions.TemplateDoesNotExist: index.html 2.解决办法,在settings.py文件中,找到TEMPLATE ...
- Openstack 网络服务 Neutron介绍和控制节点部署 (十)
Neutron介绍 neutron是openstack重要组件之一,在以前是时候没有neutron项目. 早期的时候是没有neutron,早期所使用的网络的nova-network,经过版本改变才有个 ...
- CodeForces 144B Meeting
暴力. 题目只要求计算边上的点就可以了,一开始没看清题意,把内部的也算进去了.内部的计算可以延迟标记一下,但这题没有必要. #include<map> #include<set> ...