Java并发包之闭锁/栅栏/信号量
二、同步工具类详解
1、Semaphore信号量:跟锁机制存在一定的相似性,semaphore也是一种锁机制,所不同的是,reentrantLock是只允许一个线程获得锁,而信号量持有多个许可(permits),允许多个线程获得许可并执行。可以用来控制同时访问某个特定资源的操作数量,或者同时执行某个指定操作的数量。
示例代码:
5 public class TIJ_semaphore {
6 public static void main(String[] args) {
7 ExecutorService exec = Executors.newCachedThreadPool();
8 final Semaphore semp = new Semaphore(5); // 5 permits
9
10 for (int index = 0; index < 20; index++) {
11 final int NO = index;
12 Runnable run = new Runnable() {
13 public void run() {
14 try {
// if 1 permit avaliable, thread will get a permits and go; if no permit avaliable, thread will block until 1 avaliable
15 semp.acquire();
16 System.out.println("Accessing: " + NO);
17 Thread.sleep((long) (10000);
18 semp.release();
19 } catch (InterruptedException e) {
20 }
21 }
22 };
23 exec.execute(run);
24 }
25 exec.shutdown();
26 }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
2、CountDownLatch闭锁:允许一个或多个线程一直等待,直到其他线程的操作执行完后再执行。CountDownLatch是通过一个计数器来实现的,计数器的初始值为线程的数量。每当一个线程完成了自己的任务后,计数器的值就会减1。当计数器值到达0时,它表示所有的线程已经完成了任务,然后在闭锁上等待的线程就可以恢复执行任务。
主要方法:
1. CountDownLatch.await():将某个线程阻塞住,直到计数器count=0才恢复执行。
2. CountDownLatch.countDown():将计数器count减1。
使用场景:
1. 实现最大的并行性:有时我们想同时启动多个线程,实现最大程度的并行性。例如,我们想测试一个单例类。如果我们创建一个初始计数为1的CountDownLatch,并让所有线程都在这个锁上等待,那么我们可以很轻松地完成测试。我们只需调用 一次countDown()方法就可以让所有的等待线程同时恢复执行。
2. 开始执行前等待n个线程完成各自任务:例如应用程序启动类要确保在处理用户请求前,所有N个外部系统已经启动和运行了。
3. 死锁检测:一个非常方便的使用场景是,你可以使用n个线程访问共享资源,在每次测试阶段的线程数目是不同的,并尝试产生死锁。
4. 计算并发执行某个任务的耗时。
示例代码:
public class CountDownLatchTest {
public void timeTasks(int nThreads, final Runnable task) throws InterruptedException{
final CountDownLatch startGate = new CountDownLatch(1);
final CountDownLatch endGate = new CountDownLatch(nThreads);
for(int i = 0; i < nThreads; i++){
Thread t = new Thread(){
public void run(){
try{
startGate.await();
try{
task.run();
}finally{
endGate.countDown();
}
}catch(InterruptedException ignored){
}
}
};
t.start();
}
long start = System.nanoTime();
System.out.println("打开闭锁");
startGate.countDown();
endGate.await();
long end = System.nanoTime();
System.out.println("闭锁退出,共耗时" + (end-start));
}
public static void main(String[] args) throws InterruptedException{
CountDownLatchTest test = new CountDownLatchTest();
test.timeTasks(5, test.new RunnableTask());
}
class RunnableTask implements Runnable{
@Override
public void run() {
System.out.println("当前线程为:" + Thread.currentThread().getName());
}
}
执行结果为:
打开闭锁
当前线程为:Thread-0
当前线程为:Thread-3
当前线程为:Thread-2
当前线程为:Thread-4
当前线程为:Thread-1
闭锁退出,共耗时1109195
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
3、CyclicBarrier栅栏:用于阻塞一组线程直到某个事件发生。所有线程必须同时到达栅栏位置才能继续执行下一步操作,且能够被重置以达到重复利用。而闭锁是一次性对象,一旦进入终止状态,就不能被重置。
示例代码:
public class CyclicBarrierTest {
private final CyclicBarrier barrier;
private final Worker[] workers;
public CyclicBarrierTest(){
int count = Runtime.getRuntime().availableProcessors();
this.barrier = new CyclicBarrier(count,
new Runnable(){
@Override
public void run() {
System.out.println("所有线程均到达栅栏位置,开始下一轮计算");
}
});
this.workers = new Worker[count];
for(int i = 0; i< count;i++){
workers[i] = new Worker(i);
}
}
private class Worker implements Runnable{
int i;
public Worker(int i){
this.i = i;
}
@Override
public void run() {
for(int index = 1; index < 3;index++){
System.out.println("线程" + i + "第" + index + "次到达栅栏位置,等待其他线程到达");
try {
//注意是await,而不是wait
barrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
return;
} catch (BrokenBarrierException e) {
e.printStackTrace();
return;
}
}
}
}
public void start(){
for(int i=0;i<workers.length;i++){
new Thread(workers[i]).start();
}
}
public static void main(String[] args){
new CyclicBarrierTest().start();
}
}
执行结果为:
线程0第1次到达栅栏位置,等待其他线程到达
线程1第1次到达栅栏位置,等待其他线程到达
线程2第1次到达栅栏位置,等待其他线程到达
线程3第1次到达栅栏位置,等待其他线程到达
所有线程均到达栅栏位置,开始下一轮计算
线程3第2次到达栅栏位置,等待其他线程到达
线程2第2次到达栅栏位置,等待其他线程到达
线程0第2次到达栅栏位置,等待其他线程到达
线程1第2次到达栅栏位置,等待其他线程到达
所有线程均到达栅栏位置,开始下一轮计算
Java并发包之闭锁/栅栏/信号量的更多相关文章
- Java并发包之闭锁/栅栏/信号量(转)
本文转自http://blog.csdn.net/u010942020/article/details/79352560 感谢作者 一.Java多线程总结: 描述线程的类:Runable和Thread ...
- java并发编程笔记3-同步容器&并发容器&闭锁&栅栏&信号量
一.同步容器: 1.Vector容器实现了List接口,Vector实际上就是一个数组,和ArrayList类似,但是Vector中的方法都是synchronized方法,即进行了同步措施.保证了线程 ...
- Java 并发包中的高级同步工具
Java 并发包中的高级同步工具 Java 中的并发包指的是 java.util.concurrent(简称 JUC)包和其子包下的类和接口,它为 Java 的并发提供了各种功能支持,比如: 提供了线 ...
- java并发包&线程池原理分析&锁的深度化
java并发包&线程池原理分析&锁的深度化 并发包 同步容器类 Vector与ArrayList区别 1.ArrayList是最常用的List实现类,内部是通过数组实现的, ...
- Java并发编程(您不知道的线程池操作), 最受欢迎的 8 位 Java 大师,Java并发包中的同步队列SynchronousQueue实现原理
Java_并发编程培训 java并发程序设计教程 JUC Exchanger 一.概述 Exchanger 可以在对中对元素进行配对和交换的线程的同步点.每个线程将条目上的某个方法呈现给 exchan ...
- 深入浅出Java并发包—CountDownLauch原理分析 (转载)
转载地址:http://yhjhappy234.blog.163.com/blog/static/3163283220135875759265/ CountDownLauch是Java并发包中的一个同 ...
- Java并发包源码学习系列:同步组件Semaphore源码解析
目录 Semaphore概述及案例学习 类图结构及重要字段 void acquire() 非公平 公平策略 void acquire(int permits) void acquireUninterr ...
- Java并发包源码学习之AQS框架(四)AbstractQueuedSynchronizer源码分析
经过前面几篇文章的铺垫,今天我们终于要看看AQS的庐山真面目了,建议第一次看AbstractQueuedSynchronizer 类源码的朋友可以先看下我前面几篇文章: <Java并发包源码学习 ...
- Java并发包源码学习之AQS框架(三)LockSupport和interrupt
接着上一篇文章今天我们来介绍下LockSupport和Java中线程的中断(interrupt). 其实除了LockSupport,Java之初就有Object对象的wait和notify方法可以实现 ...
随机推荐
- java 和 JVM
C++和Java的区别 指针:java中不存在指针的概念,编程者无法直接通过指针来直接访问内存,有利于维护java程序的安全 多重继承:C++支持多重继承,java不支持多重继承,但是允许一个类继承多 ...
- pycaffe做识别时通道转换问题
转自--------------------- 作者:Peanut_范 来源:CSDN 原文:https://blog.csdn.net/u013841196/article/details/7 ...
- 谈谈mybatis逆向工程中的Example类
参考博客: http://openwares.net/database/mybatis_generator_example.html 一.Example类的作用:一个用于筛选复杂条件的类 二.Exam ...
- MySQL的sql_mode解析与设置
https://blog.csdn.net/hhq163/article/details/54140286 https://blog.csdn.net/ccccalculator/article/de ...
- CentOS下配置FTP
http://www.cnblogs.com/zhenmingliu/archive/2012/04/25/2470646.html 常见错误: 1.FTP服务器已经拒绝 解决方案 # setenfo ...
- hive-group by的时候把两个字段变成map
源表结构: pcgid string mobilegid string value double 测试数据如下: p1 m1 ...
- java虚拟机字节码执行引擎
定义 java虚拟机字节码执行引擎是jvm最核心的组成部分之一,它做的事情很简单:输入的是字节码文件,处理过程是字节码解析的等效过程,输出的是执行结果.在不同的虚拟机实现里,执行引擎在执行java代码 ...
- hdu 1003(最大子段和)
Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Sub ...
- 常用python shell
路径及文件操作 创建目录 os.mkdir(path_str) 列出当前文件夹中文件,存入string list中 os.listdir(path_str) 判断路径是否存在 os.path.exis ...
- ZIP排除指定目录进行压缩
zip -r glog-0.3.5.zip glog-0.3.5/ -x "glog-0.3.5/doc/*" unzip -v glog-0.3.5.zip 进行查看ZIP的内 ...