test20181219(期末考试)
Written with StackEdit.
\(noip\)爆炸后就好久没考试了...结果今天又被抓去,感觉很慌啊...
- 考完了.过来填坑.
T1
Description
使得\(x^x\)达到或超过\(n\)位数字的最小正整数\(x\)是多少?
Input
输入一个正整数\(n(n<=2*10^9)\)。
Output
输出使得\(x^x\)达到\(n\)位数字的最小正整数\(x\)。
Sample Input
11
Sample Output
10
Solution
- \(x^x\geq 10^{n-1}\).对\(10\)去取对数,等价于\(xlog_{10}x\geq n-1.\)
- 二分\(x\),用\(cmath\)库自带的\(log10\)函数检验即可.
#include<bits/stdc++.h>
using namespace std;
inline int read()
{
int out=0,sgn=1;
char jp=getchar();
while(jp!='-' && (jp>'9' || jp<'0'))
jp=getchar();
if(jp=='-')
jp=getchar(),sgn=-1;
while(jp>='0' && jp<='9')
out=out*10+(jp-'0'),jp=getchar();
return out*sgn;
}
using namespace std;
long long fpow(int a,int b)
{
long long s=1;
while(b)
{
if(b&1)
s*=a;
a*=a;
b>>=1;
}
return s;
}
double count(long long x)
{
double y=x*1.0;
return y*log10(y);
}
int main()
{
freopen("xx.in","r",stdin);
freopen("xx.out","w",stdout);
int n=read();
double x=(n-1)*1.0;
long long L=1,R=1000000000000000000;
long long ans=R+1;
while(L<=R)
{
long long mid=(L+R)>>1;
if(count(mid)>=x)
R=mid-1,ans=min(ans,mid);
else
L=mid+1;
}
cout<<ans<<endl;
return 0;
}
T2
Description
和所有人一样,奶牛喜欢变化。它们正在设想新造型的牧场。奶牛建筑师\(Hei\)想建造围有漂亮白色栅栏的三角形牧场。她拥有\(N(3≤N≤40)\)块木板,每块的长度\(L_i(1≤L_i≤40\))都是整数,她想用所有的木板围成一个三角形使得牧场面积最大。
请帮助\(Hei\)小姐构造这样的牧场,并计算出这个最大牧场的面积。
Input
第\(1\)行:一个整数\(N.\)
第\(2..N+1\)行:每行包含一个整数,即是木板长度。
Output
仅一个整数:最大牧场面积乘以\(100\)然后舍尾的结果。如果无法构建,输出\(-1\)。
Sample Input
5 1 1 3 3 4
Sample Output
692
HINT
\(692=\)舍尾后的(\(100×\)三角形面积),此三角形为等边三角形,边长为\(4\)。
Solution
考场上做不出来...怒水了一发\(dfs\),居然有\(70pts.\)
将所有的木板当作背包,木板的长度作为背包的重量。与普通背包问题不同的是,这里有两个背包。所以,我们要求的不是重量\(w\)是否能得到,而是一个重量二元组\((w0, w1)\)是否能得到。求解的方法与普通背包问题基本相同,只不过状态是二维的。
求得所有可以得到的二元组后,枚举所有的二元组。对于任意的\((w_0, w_1),w_0, w_1,w—w_0—w_1(w\)表示所有背包的总重量)即是对应的三角形三边之长(可能是非法三角形)。这些三角形中面积最大者就是我们所求的答案。
#include<iostream>
#include<cmath>
#include<cstdio>
using namespace std;
int main()
{
freopen("pasture.in" , "r", stdin );
freopen("pasture.out", "w", stdout);
bool f[841][841]= {0};
int n,b[40],i,j,s=0,k;
double m=0,p,t;
cin>>n;
for(i=0; i<n; i++)
{
cin>>b[i];
s+=b[i];
}
f[0][0]=true;
for(k=0; k<n; k++)
for(i=s/2; i>=0; i--)
for(j=i; j>=0; j--)
if(f[i][j])
{
f[i][j+b[k]]=true;
f[i+b[k]][j]=true;
}
p=s/2.0;
for(i=1; i<p; i++)
for(j=1; j<=i; j++)
if(f[i][j]==true&&((i+j)>(s-i-j))&&((i-j)<(s-i-j)))
{
t=p*(p-i)*(p-j)*(p-(s-i-j));
if(m<t) m=t;
}
if(m<=0)cout<<"-1"<<endl;
else cout<<int(sqrt(m)*100)<<endl;
return 0;
}
T3
【问题描述】
小\(N\)最近学习了位运算,她发现\(2\)个数\(xor\)之后数的大小可能变大也可能变小,\(and\)之后都不会变大,\(or\)之后不会变小。于是她想算出以下的期望值:现在有 \(N\)个数排成一排,如果她随意选择一对\(l,r\)并将下标在\(l\)和\(r\)中间(包括\(l,r\))的数\((xor,and,or)\)之后,期望得到的值是多少呢?取出每一对\(l,r\) 的概率都是相等的。(\(l>r\)也被视作有意义).
Input
第一行\(1\)个正整数\(N\)。
第二行\(N\)个非负整数代表数列.
Output
一行\(3\)个数,分别表示\(xor\)的期望,\(and\)的期望,\(or\)的期望,保留\(3\)位小数。
Sample Input
2
4 5
Sample Output
2.750 4.250 4.750
HINT
\(30\%\)数据中\(1<=N<=1000.\)
对于另外的\(30\%\)数据数列中只包含\(0\)和\(1\).
对于\(100\%\)的数据\(1<=N<=100000\),数列中的数 \(\leq 10^9.\)
Solution
- 可以先求出每个的区间的\((xor,and,or)\)总和,再除以区间总数.
- 显然,每一位可以分开计算.下面以\(xor\)为例.
- 考虑对于每一位,有若干个\(0/1\),只用考虑贡献为\(1\)的区间,显然这样的区间内有奇数个\(1\).
- 令\(f[i][0/1]\)为区间右端点为\(i\),区间内有偶数/奇数个\(1\)的区间数目.这里只考虑\(l\leq r\),最终答案可以通过简单操作得到.
- \(and,or\)的计算方法类似,适当修改一下\(0/1\)这一位的定义就可以了.
#include<bits/stdc++.h>
using namespace std;
#define rg register
#define il inline
inline int read()
{
int out=0,sgn=1;
char jp=getchar();
while(jp!='-' && (jp>'9' || jp<'0'))
jp=getchar();
if(jp=='-')
jp=getchar(),sgn=-1;
while(jp>='0' && jp<='9')
out=out*10+(jp-'0'),jp=getchar();
return out*sgn;
}
const int MAXN=1e5+10;
int a[MAXN];
int x[MAXN][40];
long long f[MAXN][2];
int n,lim=0;
long long tot=0;
double xor1=0,and1=0,or1=0;
long long xor2=0,and2=0,or2=0;
il void dp_xor(int j)
{
f[0][0]=0,f[0][1]=0;
long long res=0;
for(rg int i=1;i<=n;++i)
{
#define val x[i][j]
if(val)
{
f[i][0]=f[i-1][1];
f[i][1]=f[i-1][0]+1;
}
else
{
f[i][0]=f[i-1][0]+1;
f[i][1]=f[i-1][1];
}
res+=f[i][1];
}
xor2+=res<<j;
}
il void dp_and(int j)
{
f[0][1]=0;
long long res=0;
for(rg int i=1;i<=n;++i)
{
#define val x[i][j]
if(val)
f[i][1]=f[i-1][1]+1;
else
f[i][1]=0;
res+=f[i][1];
}
and2+=res<<j;
}
il void dp_or(int j)
{
f[0][0]=f[0][1]=0;
long long res=0;
for(rg int i=1;i<=n;++i)
{
#define val x[i][j]
if(val)
{
f[i][0]=0;
f[i][1]=f[i-1][0]+f[i-1][1]+1;
}
else
{
f[i][0]=f[i-1][0]+1;
f[i][1]=f[i-1][1];
}
res+=f[i][1];
}
or2+=res<<j;
}
void solve_xor()
{
for(rg int i=0;i<=lim;++i)
dp_xor(i);
xor2<<=1;
for(rg int i=1;i<=n;++i)
xor2-=1LL*a[i];
xor1=1.0*xor2/(1.0*n*n);
}
void solve_and()
{
for(rg int i=0;i<=lim;++i)
dp_and(i);
and2<<=1;
and2-=tot;
and1=1.0*and2/(1.0*n*n);
}
void solve_or()
{
for(rg int i=0;i<=lim;++i)
dp_or(i);
or2<<=1;
or2-=tot;
or1=1.0*or2/(1.0*n*n);
}
int main()
{
freopen("nine.in","r",stdin);
freopen("nine.out","w",stdout);
n=read();
for(rg int i=1;i<=n;++i)
{
a[i]=read();
tot+=1LL*a[i];
int k=a[i];
int j=-1;
while(k)
{
++j;
x[i][j]=k&1;
k>>=1;
}
lim=max(lim,j);
}
if(lim<0)
{
puts("0.000 0.000 0.000");
return 0;
}
// cerr<<lim<<endl;
solve_xor();
solve_and();
solve_or();
printf("%.3lf %.3lf %.3lf\n",xor1,and1,or1);
//cout<<xor2<<' '<<and2<<' '<<or2<<' '<<endl;
return 0;
}
//2 4 5
test20181219(期末考试)的更多相关文章
- 复旦大学2015--2016学年第二学期高等代数II期末考试情况分析
一.期末考试成绩班级前几名 胡晓波(90).杨彦婷(88).宋卓卿(85).唐指朝(84).陈建兵(83).宋沛颖(82).王昊越(81).白睿(80).韩沅伯(80).王艺楷(80).张漠林(80) ...
- 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答
八.(本题10分) 设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析 证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...
- 复旦大学2015--2016学年第一学期高等代数I期末考试情况分析
一.期末考试成绩班级前几名 胡晓波(93).宋沛颖(92).张舒帆(91).姚人天(90).曾奕博(90).杨彦婷(90).白睿(88).唐指朝(87).谢灵尧(87).蔡雪(87) 二.总成绩计算方 ...
- 复旦大学2014--2015学年第二学期高等代数II期末考试情况分析
一.期末考试成绩班级前几名 钱列(100).王华(92).李笑尘(92).金羽佳(91).李卓凡(91).包振航(91).董麒麟(90).张钧瑞(90).陆毕晨(90).刘杰(90).黄成晗(90). ...
- 复旦大学2014--2015学年第一学期高等代数I期末考试情况分析
一.期末考试成绩班级前几名 金羽佳(92).包振航(91).陈品翰(91).孙浩然(90).李卓凡(85).张钧瑞(84).郭昱君(84).董麒麟(84).张诚纯(84).叶瑜(84) 二.总成绩计算 ...
- nyoj 757 期末考试【优先队列+贪心】
期末考试 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 马上就要考试了,小T有许多作业要做,而且每个老师都给出来了作业要交的期限,如果在规定的期限内没 交作业就会扣 ...
- 复旦大学2016--2017学年第一学期高等代数I期末考试情况分析
一.期末考试成绩班级前十名 宁盛臻(100).朱民哲(92).徐钰伦(86).范凌虎(85).沈伊南(84).何陶然(84).丁知愚(83).焦思邈(83).董瀚泽(82).钱信(81) 二.总成绩计 ...
- 2012 B 中国近现代史纲要》课程期末考试试卷
湖南人文科技学院2013年3月公共课 2011级<中国近现代史纲要>课程期末考试试卷B 考核方式:(开卷) 考试时量: ...
- 2012 A 《中国近现代史纲要》课程期末考试试卷
湖南人文科技学院2012—2013学年第1学期公共课 2011级<中国近现代史纲要>课程期末考试试卷 考核方式:(开卷) ...
随机推荐
- Eclipse+maven 导致Eclipse启动后Build workspaces卡死或者下载缓慢的问题
参考文档: (1)Eclipse 一直不停 building workspace完美解决总结 (2)eclipse 一直building workspace 问题 解决办法: (1)第一步: 修改ec ...
- Django学习笔记之模板渲染、模板语言、simple_tag、母版子版、静态配置文件
一.首先我们用PyCharm来创建一个Django项目 终端命令:django-admin startproject sitename 图形创建: 这样一个Django项目就创建完成了,上面可以看 ...
- Sybase数据库:两个特别注意的地方
Sybase数据库:两个特别注意的地方 一.字段别名 字段别名不能为查询条件中的列名,会导致查询出来的数据不准确:最好字段别名为非列名: 二.更新的表名的大小写 update a set .... s ...
- Zabiix 监控图形乱码问题
Zabiix切换为中文 配置中文乱码问题 在C:\Windows\Fonts中复制想要的字体,后缀为ttf,若本身问大写,请改成小写的文件后缀ttf,并上传至zabbix服务器的/usr/local/ ...
- HTML5统计图表数据初始动画
在线演示 本地下载
- 20145109《Java程序设计》第一周学习总结
20145109 <Java程序设计>第一周学习总结 教材学习内容总结 About JVM, JRE, JDK JVM包含于JRE中,用于运行Java程序.JDK用于开发Java程序,包含 ...
- NOIP 货车运输
题目描述 Description A 国有 n 座城市,编号从 1 到 n,城市之间有 m 条双向道路.每一条道路对车辆都有重量限制,简称限重.现在有 q 辆货车在运输货物,司机们想知道每辆车在不超过 ...
- Java学习笔记50:JSONObject与JSONArray的使用(转)
Java不像PHP解析和生产JSON总是一个比较痛苦的过程.但是使用JSONObject和JSONArray会让整个过程相对舒服一些. 需要依赖的包:commons-lang.jar commons- ...
- 使用本地JConsole监控远程JVM
第一阶段 找到了2种配置,是否需要输入密码. 在 catalina.bat 文件新增如下脚本 第一种配置: rem HaoYang Set JAVA_OPTSset JAVA_OPTS=-Xms512 ...
- Hibernate常见优化策略
① 制定合理的缓存策略(二级缓存.查询缓存). ② 采用合理的Session管理机制. ③ 尽量使用延迟加载特性. ④ 设定合理的批处理参数. ⑤ 如果可以,选用UUID作为主键生成器. ⑥ 如果可以 ...