一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用。 
    一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义:
2、单调性(Monotonicity):单调性是指如果已经有一些内容通过哈希分派到了相应的缓冲中,又有新的缓冲加入到系统中。哈希的结果应能够保证原有已分配的内容可以被映射到原有的或者新的缓冲中去,而不会被映射到旧的缓冲集合中的其他缓冲区。 
3、分散性(Spread): 在分布式环境中,终端有可能看不到所有的缓冲,而是只能看到其中的一部分。当终端希望通过哈希过程将内容映射到缓冲上时,由于不同终端所见的缓冲范围有可 能不同,从而导致哈希的结果不一致,最终的结果是相同的内容被不同的终端映射到不同的缓冲区中。这种情况显然是应该避免的,因为它导致相同内容被存储到不 同缓冲中去,降低了系统存储的效率。分散性的定义就是上述情况发生的严重程度。好的哈希算法应能够尽量避免不一致的情况发生,也就是尽量降低分散性。 
 
 
在分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是分布式集群管理最基本的功能。如果采用常用的hash(object)%N算
法,那么在有机器添加或者删除后,很多原有的数据就无法找到了,这样严重的违反了单调性原则。接下来主要讲解一下一致性哈希算法是如何设计的:
按照常用的hash算法来将对应的key哈希到一个具有2^32次方个桶的空间中,即0~(2^32)-1的数字空间中。现在我们可以将这些数字头尾相连,想象成一个闭合的环形。如下图
                                                                        
现在我们将object1、object2、object3、object4四个对象通过特定的Hash函数计算出对应的key值,然后散列到Hash环上。如下图:
    Hash(object1) = key1;
    Hash(object2) = key2;
    Hash(object3) = key3;
    Hash(object4) = key4;
                                                          
在采用一致性哈希算法的分布式集群中将新的机器加入,其原理是通过使用与对象存储一样的Hash算法将机器也映射到环中(一般情况下对机器的hash计算是采用机器的IP或者机器唯一的别名作为输入值),然后以顺时针的方向计算,将所有对象存储到离自己最近的机器中。
假设现在有NODE1,NODE2,NODE3三台机器,通过Hash算法得到对应的KEY值,映射到环中,其示意图如下:
Hash(NODE1) = KEY1;
Hash(NODE2) = KEY2;
Hash(NODE3) = KEY3;
                                                            

过上图可以看出对象与机器处于同一哈希空间中,这样按顺时针转动object1存储到了NODE1中,object3存储到了NODE2
中,object2、object4存储到了NODE3中。在这样的部署环境中,hash环是不会变更的,因此,通过算出对象的hash值就能快速的定位
到对应的机器中,这样就能找到对象真正的存储位置了。
普通hash求余算法最为不妥的地方就是在有机器的添加或者删除之后会照成大量的对象存储位置失效,这样就大大的不满足单调性了。下面来分析一下一致性哈希算法是如何处理的。
1. 节点(机器)的删除
    以上面的分布为例,如果NODE2出现故障被删除了,那么按照顺时针迁移的方法,object3将会被迁移到NODE3中,这样仅仅是object3的映射位置发生了变化,其它的对象没有任何的改动。如下图:
                                                             
2. 节点(机器)的添加 
    如果往集群中添加一个新的节点NODE4,通过对应的哈希算法得到KEY4,并映射到环中,如下图:
                                                             
 
 
通过按顺时针迁移的规则,那么object2被迁移到了NODE4中,其它对象还保持这原有的存储位置。通过对节点的添加和删除的分析,一致性哈希算法在
保持了单调性的同时,还是数据的迁移达到了最小,这样的算法对分布式集群来说是非常合适的,避免了大量数据迁移,减小了服务器的的压力。

据上面的图解分析,一致性哈希算法满足了单调性和负载均衡的特性以及一般hash算法的分散性,但这还并不能当做其被广泛应用的原由,因为还缺少了平衡
性。下面将分析一致性哈希算法是如何满足平衡性的。hash算法是不保证平衡的,如上面只部署了NODE1和NODE3的情况(NODE2被删除的
图),object1存储到了NODE1中,而object2、object3、object4都存储到了NODE3中,这样就照成了非常不平衡的状态。
在一致性哈希算法中,为了尽可能的满足平衡性,其引入了虚拟节点。
    ——“虚拟节点”( virtual node )是实际节点(机器)在 hash 空间的复制品( replica ),一实际个节点(机器)对应了若干个“虚拟节点”,这个对应个数也成为“复制个数”,“虚拟节点”在 hash 空间中以hash值排列。
以上面只部署了NODE1和NODE3的情况(NODE2被删除的图)为例,之前的对象在机器上的分布很不均衡,现在我们以2个副本(复制个数)为例,这样整个hash环中就存在了4个虚拟节点,最后对象映射的关系图如下:
                                                                

据上图可知对象的映射关
系:object1->NODE1-1,object2->NODE1-2,object3->NODE3-2,object4->NODE3-1。
通过虚拟节点的引入,对象的分布就比较均衡了。那么在实际操作中,正真的对象查询是如何工作的呢?对象从hash到虚拟节点到实际节点的转换如下图:
                                         
“虚拟节点”的hash计算可以采用对应节点的IP地址加数字后缀的方式。例如假设NODE1的IP地址为192.168.1.100。引入“虚拟节点”前,计算 cache A 的 hash 值:
Hash(“192.168.1.100”);
引入“虚拟节点”后,计算“虚拟节”点NODE1-1和NODE1-2的hash值:
Hash(“192.168.1.100#1”); // NODE1-1
Hash(“192.168.1.100#2”); // NODE1-2

【策略】一致性Hash算法的更多相关文章

  1. 【策略】一致性Hash算法(Hash环)的java代码实现

    [一]一致性hash算法,基本实现分布平衡. package org.ehking.quartz.curator; import java.util.SortedMap; import java.ut ...

  2. 分布式缓存技术memcached学习(四)—— 一致性hash算法原理

    分布式一致性hash算法简介 当你看到“分布式一致性hash算法”这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前,我们先来了解一下这几 ...

  3. memcache的一致性hash算法使用

    一.概述 1.我们的memcache客户端(这里我看的spymemcache的源码),使用了一致性hash算法ketama进行数据存储节点的选择.与常规的hash算法思路不同,只是对我们要存储数据的k ...

  4. 一致性Hash算法在Redis分布式中的使用

    由于redis是单点,但是项目中不可避免的会使用多台Redis缓存服务器,那么怎么把缓存的Key均匀的映射到多台Redis服务器上,且随着缓存服务器的增加或减少时做到最小化的减少缓存Key的命中率呢? ...

  5. 分布式算法(一致性Hash算法)

    一.分布式算法 在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括: 轮循算法(Round Robin).哈希算法(HASH).最少连接算法(Least Connection).响应速度算法( ...

  6. OpenStack_Swift源代码分析——Ring基本原理及一致性Hash算法

    1.Ring的基本概念 Ring是swfit中最重要的组件.用于记录存储对象与物理位置之间的映射关系,当用户须要对Account.Container.Object操作时,就须要查询相应的Ring文件( ...

  7. 分布式缓存技术memcached学习系列(四)—— 一致性hash算法原理

    分布式一致性hash算法简介 当你看到"分布式一致性hash算法"这个词时,第一时间可能会问,什么是分布式,什么是一致性,hash又是什么.在分析分布式一致性hash算法原理之前, ...

  8. Nginx+Memcache+一致性hash算法 实现页面分布式缓存(转)

    网站响应速度优化包括集群架构中很多方面的瓶颈因素,这里所说的将页面静态化.实现分布式高速缓存就是其中的一个很好的解决方案... 1)先来看看Nginx负载均衡 Nginx负载均衡依赖自带的 ngx_h ...

  9. 分布式一致性hash算法

    写在前面  在学习Redis的集群内容时,看到这么一句话:Redis并没有使用一致性hash算法,而是引入哈希槽的概念.而分布式缓存Memcached则是使用分布式一致性hash算法来实现分布式存储. ...

随机推荐

  1. MySQL-5.7密码策略及用户资源限制

    1.密码策略 在mysql 5.6对密码的强度进行了加强,推出了validate_password 插件.支持密码的强度要求. (1)安装插件 [root@localhost ~]# ll /usr/ ...

  2. [pixhawk笔记]3-架构概览

    本文主要内容翻译自:https://dev.px4.io/en/concept/architecture.html 总体架构: PX4代码由两层组成:PX4飞行栈和PX4中间件.其中,前者是一套飞行控 ...

  3. Spring_事务(2)

  4. [POI2013]BAJ-Bytecomputer

    题目描述 A sequence of integers from the set is given. The bytecomputer is a device that allows the foll ...

  5. maven项目Dao层优化

    平时我们习惯一个实体类就对应一个dao类,这样做,增删改查都大同小异,只是实体类对象不一样而已,因此,我们可以把公用的方法抽取来,建立一个IBaseDao接口,如下: public interface ...

  6. Standard 1.1.x VM与Standard VM的区别

    在Eclipse或MyEclipse中要设置Installed JREs时,有三个选择: - Execution Environment Description - Standard 1.1.x VM ...

  7. scala学习手记34 - trait方法的延迟绑定

    trait的方法的延迟绑定就是先混入的trait的方法会后调用.这一点从上一节的实例中也可以看出来. 下面再来看一个类似的例子: abstract class Writer { def write(m ...

  8. django中Model表的反向查询

    很多时候需要在多张表之间进行跨表查询,这其中外键是必须存在的,而通过外键所处的表的对象进行跨表查询, 称为正向查询.反之,则是反向查询. 正向查询很简单,这里不谈. 主要谈下反向查询. class U ...

  9. 英语发音规则---A字母

    英语发音规则---A字母 一.总结 一句话总结:本文所有//的音标为英音音标,[]的音标为美音音标 1.A在开音节中发/eɪ/ [e]? age /eɪdʒ/ [edʒ] 年龄 ape /eɪp/ [ ...

  10. MFC--自定义CMFCTabCtrl的实现

    在MFC实现桌面程序时,可能会用到TabView效果,我实现的是最基本的效果,如下图: 下面介绍详细的实现过程,如果需要效果更好看些,自行美化. 1.  创建自定义MFCTabCtrl类MyMFCTa ...