动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。 
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述: 
第一种说法是"1 X Y",表示X和Y是同类。 
第二种说法是"2 X Y",表示X吃Y。 
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。 
1) 当前的话与前面的某些真的话冲突,就是假话; 
2) 当前的话中X或Y比N大,就是假话; 
3) 当前的话表示X吃X,就是假话。 
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。 

Input

第一行是两个整数N和K,以一个空格分隔。 
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。 
若D=1,则表示X和Y是同类。 
若D=2,则表示X吃Y。

Output

只有一个整数,表示假话的数目。

Sample Input

100 7
1 101 1
2 1 2
2 2 3
2 3 3
1 1 3
2 3 1
1 5 5

Sample Output

3

【洛谷】https://www.luogu.org/problemnew/show/P2024

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e5 + ;
const int maxm = 1e6 + ;
const double PI = acos(-1.0);
const double eps = 1e-;
const int dx[] = {-,,,,,,-,-};
const int dy[] = {,,,-,,-,,-};
int dir[][] = {{,},{,-},{-,},{,}};
const int mon[] = {, , , , , , , , , , , , };
const int monn[] = {, , , , , , , , , , , , };
int n,m,d,x,y;
int fa[maxn*];
inline int read()
{
int sum=;
char ch=getchar();
while(ch>''||ch<'') ch=getchar();
while(ch>=''&&ch<='') sum=sum*+ch-,ch=getchar();
return sum;
}
int Find(int x)
{
return fa[x]==x ? x:fa[x]=Find(fa[x]);
}
void join(int x,int y)
{
int fx=Find(x);
int fy=Find(y);
fa[fx]=fy;
}
int main()
{ scanf("%d%d",&n,&m);
int ans=;
for(int i=;i<=*n;i++) fa[i]=i;
for(int i=;i<=m;i++)
{
scanf("%d%d%d",&d,&x,&y);
if(x>n||y>n){ans++;continue;}
if(d==)
{
if(Find(x+n)==Find(y) || Find(x+*n)==Find(y)) {ans++;continue;}
join(x,y); join(x+n,y+n); join(x+*n,y+*n);
}
else if(d==)
{
if(Find(x)==Find(y) || Find(x+*n)==Find(y)) {ans++;continue;}
join(x,y+*n); join(x+n,y); join(x+*n,y+n);
}
}
printf("%d\n",ans);
return ;
} /*
【题意】
略 【类型】
带权并查集 【分析】
对于每种生物:设 x 为本身,x+n 为猎物,x+2*n 为天敌 【时间复杂度&&优化】 【trick】 【数据】
*/

POJ 1182 食物链 【带权并查集/补集法】的更多相关文章

  1. poj 1182 食物链 带权并查集

    食物链是并查集的进阶运用的一道非常经典的题目. 题目如下: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A, ...

  2. POJ 1182 食物链 (带权并查集 && 向量偏移)

    题意 : 中文题就不说题意了…… 分析 : 通过普通并查集的整理归类, 能够单纯地知道某些元素是否在同一个集合内.但是题目不仅只有种类之分, 还有种类之间的关系, 即同类以及吃与被吃, 而且重点是题目 ...

  3. HDU 1829 A Bug's Life 【带权并查集/补集法/向量法】

    Background Professor Hopper is researching the sexual behavior of a rare species of bugs. He assumes ...

  4. K - Find them, Catch them POJ - 1703 (带权并查集)

    题目链接: K - Find them, Catch them POJ - 1703 题目大意:警方决定捣毁两大犯罪团伙:龙帮和蛇帮,显然一个帮派至少有一人.该城有N个罪犯,编号从1至N(N<= ...

  5. POJ - 2912 Rochambeau (带权并查集+枚举)

    题意:有N个人被分为了三组,其中有一个人是开了挂的.同组的人的关系是‘=’,不同组的人关系是‘<’或'>',但是开了挂的人可以给出自己和他人任意的关系.现在要根据M条关系找出这个开了挂的人 ...

  6. A Bug's Life POJ - 2492 (带权并查集)

    A Bug's Life POJ - 2492 Background Professor Hopper is researching the sexual behavior of a rare spe ...

  7. poj1182 食物链 带权并查集

    题目传送门 题目大意:大家都懂. 思路: 今天给实验室的学弟学妹们讲的带权并查集,本来不想细讲的,但是被学弟学妹们的态度感动了,所以写了一下这个博客,思想在今天白天已经讲过了,所以直接上代码. 首先, ...

  8. poj 1182:食物链(种类并查集,食物链问题)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44168   Accepted: 12878 Description ...

  9. POJ 1182 食物链(种类并查集)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 63592   Accepted: 18670 Description ...

随机推荐

  1. Spring 学习笔记之整合Hibernate

    Spring和Hibernate处于不同的层次,Spring关心的是业务逻辑之间的组合关系,Spring提供了对他们的强大的管理能力, 而Hibernate完成了OR的映射,使开发人员不用再去关心SQ ...

  2. Oracle 导出空表的新方法(彻底解决)

    背景 使用Exp命令在oracle 11g 以后不导出空表(rowcount=0),是最近在工作中遇到一个很坑的问题,甚至已经被坑了不止一次,所以这次痛定思痛,准备把这个问题彻底解决.之所以叫新方法, ...

  3. 【Atcoder】ARC084 Small Multiple

    [题意]求一个k的倍数使其数位和最小,输出数位和,k<=10^5. [算法]最短路 [题解]考虑极端情况数字是可能爆long long的(例如k*num=100...000),所以确定基本方向是 ...

  4. 【BZOJ】1529 [POI2005]ska Piggy banks

    [算法](强连通分量)并查集 [题解] 1.用tarjan计算强连通分量并缩点,在新图中找入度为0的点的个数就是答案. 但是,会爆内存(题目内存限制64MB). 2.用并查集,最后从1到n统计fa[i ...

  5. 【vijos】P1448 校门外的树

    [题意]两种操作,[L,R]种新的树(不覆盖原来的),或查询[L,R]树的种类数.n<=50000. [算法]树状数组||线段树 [题解]这题可以用主席树实现……不过因为不覆盖原来的,所以有更简 ...

  6. RabbitMq related

    # RabbitMq related Integration of message queuing tools with systems is the usual solution to handle ...

  7. bzoj 3343 分块

    因为询问比较少,所以我们可以将n个数分成sqrt(n)个块,每个块用一颗bst存一下,然后对于修改l,r,我们将l,r区间中整块的直接在bst上打一个标签,对于不是整块的我们直接暴力修改,对于询问l, ...

  8. sql server 在作业中 远程连接 oracle mysql sqlserver 数据库

    在作业中执行远程连接时,需要对本次作业执行的步骤指定特定用户 并且该用户必须拥有所需操作数据库的db_owner角色,和服务器sysadmin角色 在作业中执行远程连接时,需要做登录映射 下面是我在作 ...

  9. Android控件——Button与ImageButton

    1.简单介绍

  10. Django 1.10中文文档-第一个应用Part4-表单和通用视图

    本教程接Part3开始.继续网页投票应用程序,并将重点介绍简单的表单处理和精简代码. 一个简单表单 更新一下在上一个教程中编写的投票详细页面的模板polls/detail.html,让它包含一个HTM ...