洛谷题目链接:[POI2007]TET-Tetris Attack

题目描述

A puzzle called "Tetris Attack" has lately become a very popular game in Byteotia. The game itself is highlysophisticated, so we shall only introduce its simplified rules: the player is given a stack of \(2n\) elements, placedone on another and marked with \(n\) different symbols. Exactly two elements of the stack are marked with eachsymbol. A player's move consists in swapping two neighbouring elements, ie. interchanging them. If, as aresult of the swap, there are some two neighbouring elements marked with the same symbol, they are bothremoved from the stack. Then all the elements that have been above them fall down in consequence and mayvery well cause another removals. The player's goal is emptying the stack in the least possible number ofmoves.

TaskWrite a programme that:

reads the description of the initial stack content from the standard input, finds a solution with the minimum number of moves possible, writes out the outcome to the standard output.

给定一个长度为2n的序列,1~n各出现两次,可以交换相邻两项,两个同样的数放在一起会对消,求把所有数对消的最小交换次数。

温馨提示,输出方案。

输入输出格式

输入格式:

In the first line of the standard input there is one integer \(n\), \(1\le n\le 50\ 000\).

The following \(2n\) lines describe theinitial content of the stack. The \((i+1)\)'th line contains one integer \(a_i\) -the symbol which the \(i\)'th (\(1\le a_i\le n\))element from the bottom is marked with. Each symbol appears in the stack exactly twice. Moreover, notwo identical symbols neighbour initially. The test data is well chosen so that a solution with no more than \(1\ 000\ 000\) moves exists.

输出格式:

A solution with the minimum number of moves possible should be written out to the standard output asfollows. The first line should contain one integer \(m\) -the minimum number of moves. The following \(m\) should describe the optimal solution itself, i.e. a sequence of \(m\) integers \(p_1,\cdots,p_m\)​), one in each line. \(p_i\) denotes that in \(i\)'th move the player has chosen to swap the \(p_i\)'th and \((p_i+1)\)'th elements from the bottom.

If more than one optimal solution exists, your programme should write out any one of them.

输入输出样例

输入样例#1:

5

5

2

3

1

4

1

4

3

5

2

输出样例#1:

2

5

2

说明

SPJ返回WA:Something Left为方案错误

温馨提示,输出方案。


一句话题意: 给定一个长度为\(2n\)的序列,\(1\)~\(n\)各出现两次,可以交换相邻两项,两个同样的数放在一起会对消,求把所有数对消的最小交换次数.


题解: 先直接讲做法吧:

直接从\(1\)到\(2n\)读入每个值,当这个值第一次出现就向树状数组这个位置+1,并记录下这个值第一次出现的位置. 当这个值第二次出现的时候计算这个值与它上一次出现的位置之间加入进的值,并把上一次修改的位置-1.

那么这个方法为什么是正确的呢? (其实我自己做这道题的时候也是大力猜的结论233)

我们可以简单证明一下(可能有点伪证的成分,感性理解一下):

如果我们要使两个相同的数字合并,那么这两个数字中间的数字一定要合并.

所以这样在我们第二遍扫到一个数字的时候,要合并这个数字,就至少要将这个数字之间的数字都合并掉.

然而在树状数组中这个区间内只会有只出现过一次的数字,因为如果有还没计算的数字,就会在前面的循环中扫到.

这样的话为了让这个数字能合并,至少需要让它与之前每一个数字交换一次,不然一定会有数字夹在这两个数字中间导致不能消掉这个数字.

所以这样算出来的答案是可以保证最优的

然后在输出方案的时候就每次算出距离就可以了,可以自己想一下怎么模拟算位置.

#include<bits/stdc++.h>
using namespace std;
const int N=50000+5; int n, c[N*2], ans = 0, pos[N], stk[N*100], top = 0, res, size = 0, p; int lowbit(int x){ return -x & x; }
void update(int x,int val){ for(;x<=n*2;x+=lowbit(x)) c[x] += val; } int query(int x){
int res;
for(res = 0;x;x-=lowbit(x)) res += c[x];
return res;
} int main(){
int x; scanf("%d", &n);
for(int i=1;i<=n*2;i++){
scanf("%d", &x);
if(pos[x]){
update(pos[x], -1), res = query(i)-query(pos[x]-1);
ans += res, p = i;
while(res > 0) stk[++top] = p-size-1, p--, res--;
size += 2;
}
else pos[x] = i, update(i, 1);
}
printf("%d\n", ans);
for(int i=1;i<=top;i++) printf("%d\n", stk[i]);
return 0;
}

[洛谷P3460] [POI2007]TET-Tetris Attack的更多相关文章

  1. [洛谷3457][POI2007]POW-The Flood

    洛谷题目链接:[POI2007]POW-The Flood 题意翻译 Description 你手头有一张该市的地图.这张地图是边长为 m∗n 的矩形,被划分为m∗n个1∗1的小正方形.对于每个小正方 ...

  2. 洛谷P3459 [POI2007]MEG-Megalopolis(树链剖分,Splay)

    洛谷题目传送门 正解是树状数组维护dfn序上的前缀和,这样的思路真是又玄学又令我惊叹( 我太弱啦,根本想不到)Orz各路Dalao 今天考了这道题,数据范围还比洛谷的小,只有\(10^5\)(害我复制 ...

  3. 洛谷P3459 [POI2007]MEG-Megalopolis [树链剖分]

    题目传送门 MEG 题目描述 Byteotia has been eventually touched by globalisation, and so has Byteasar the Postma ...

  4. 洛谷 P3462 [POI2007]ODW-Weights

    题面: https://www.luogu.org/problemnew/show/P3462 https://www.lydsy.com/JudgeOnline/problem.php?id=111 ...

  5. 洛谷 P3456 [POI2007]GRZ-Ridges and Valleys

    P3456 [POI2007]GRZ-Ridges and Valleys 题意翻译 给定一个地图,为小朋友想要旅行的区域,地图被分为n*n的网格,每个格子(i,j) 的高度w(i,j)是给定的.若两 ...

  6. 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)

    题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...

  7. 洛谷P3459 [POI2007]MEG-Megalopolis [2017年6月计划 树上问题02]

    [POI2007]MEG-Megalopolis 题目描述 Byteotia has been eventually touched by globalisation, and so has Byte ...

  8. 【刷题】洛谷 P3455 [POI2007]ZAP-Queries

    题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...

  9. 洛谷P3457 [POI2007]POW-The Flood [并查集,模拟]

    题目传送门 pow 题意翻译 Description 你手头有一张该市的地图.这张地图是边长为 m∗n 的矩形,被划分为m∗n个1∗1的小正方形.对于每个小正方形,地图上已经标注了它的海拔高度以及它是 ...

随机推荐

  1. Java中 Auto-boxing/unboxing

    Java 中 Auto-boxing/unboxing 机制,在合适的时机自动打包,解包. 1. 自动将基础类型转换为对象: 2. 自动将对象转换为基础类型: Demo_1: import java. ...

  2. k邻近算法理解及代码实现

    github:代码实现 本文算法均使用python3实现 1 KNN   KNN(k-nearest neighbor, k近邻法),故名思议,是根据最近的 $ k $ 个邻居来判断未知点属于哪个类别 ...

  3. iOS- 移动端Socket UDP协议广播机制的实现

    1.前言    什么是UDP协议广播机制?      举一个例, 例如在一群人群中,一个人要找张三,于是你向人群里大喊一声(广播):“谁是张三”   如果它是张三,它就会回应你,在网络中也是一样的. ...

  4. TCP系列15—重传—5、Linux中RTO的计算

    之前我们介绍的都是协议中给出的RTO计算方法,下面我们看一下linux实现中RTO的计算方法.在linux中维护了srtt.mdev.mdev_max.rttvar.rtt_seq几个状态变量用来计算 ...

  5. 基于3D卷积神经网络的人体行为理解(论文笔记)(转)

    基于3D卷积神经网络的人体行为理解(论文笔记) zouxy09@qq.com http://blog.csdn.net/zouxy09 最近看Deep Learning的论文,看到这篇论文:3D Co ...

  6. Thinkphp5图片、音频和视频文件上传

    首先是同步上传,最为基础的上传的方式,点击表单提交之后跳转那种.如下前端代码 <!DOCTYPE html> <html lang="en"> <he ...

  7. navicat for mysql 10.1.7 注册码

    NAVN-LNXG-XHHX-5NOO名:组织:注册码:均为NAVN-LNXG-XHHX-5NOO 下载地址:http://www.cr173.com/soft/38153.html

  8. dwarf是如何处理栈帧的?

    dwarf是如何处理栈帧的? DW_AT_frame_base 表明函数栈帧的起始点 95 < 1><0x000000ca>    DW_TAG_subprogram 96   ...

  9. React & event-pooling & bug

    React & event-pooling & bug event-pooling https://reactjs.org/docs/events.html#event-pooling ...

  10. WebExtensions & tabs.executeScript()

    tabs.executeScript() https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/tabs ...