poj1178 floyd+枚举
http://poj.org/problem?id=1178
Description
at random on distinct squares.
The Board is an 8x8 array of squares. The King can move to any adjacent square, as shown in Figure 2, as long as it does not fall off the board. A Knight can jump as shown in Figure 3, as long as it does not fall off the board.
During the play, the player can place more than one piece in the same square. The board squares are assumed big enough so that a piece is never an obstacle for other piece to move freely.
The player's goal is to move the pieces so as to gather them all in the same square, in the smallest possible number of moves. To achieve this, he must move the pieces as prescribed above. Additionally, whenever the king and one or more knights are placed in
the same square, the player may choose to move the king and one of the knights together henceforth, as a single knight, up to the final gathering point. Moving the knight together with the king counts as a single move.
Write a program to compute the minimum number of moves the player must perform to produce the gathering.
Input
ones those of the knights. Each position is a letter-digit pair. The letter indicates the horizontal board coordinate, the digit indicates the vertical board coordinate.
0 <= number of knights <= 63
Output
Sample Input
D4A3A8H1H8
Sample Output
10
/**
poj 1178 floyd+枚举
题目大意:在一个8*8的棋盘里有一个国王和一些骑士,我们须要把他们送到同一顶点上去,骑士和国王的行动方式如图所看到的。国王能够选择一名骑士作为坐骑。上马后相当和该骑士
一起行动(相当于一个骑士),同一位置能够同一时候有多个骑士和国王。问最少走的步数
解题思路:把8*8棋盘变成0~63的数,Floyd求出随意两点之间的最短路径。8*8枚举就可以。枚举终点,骑士上马点,国王上哪个骑士,终于负责度O(64^4)。
*/
#include <string.h>
#include <algorithm>
#include <iostream>
#include <stdio.h>
using namespace std; char s[105];
int cx[8][2]= {{-2,-1},{-2,1},{-1,-2},{-1,2},{1,-2},{1,2},{2,-1},{2,1}};
int dx[8][2]= {{-1,-1},{-1,0},{-1,1},{0,-1},{0,1},{1,-1},{1,0},{1,1}};
int a[65][65],b[65][65],rking[65],king; bool judge(int i,int j)
{
if(i>=0&&i<8&&j>=0&&j<8)
return true;
return false;
} void init()
{
for(int i=0; i<64; i++)
{
for(int j=0; j<64; j++)
{
if(i==j)
a[i][j]=b[i][j]=0;
else
a[i][j]=b[i][j]=999;
}
}
for(int i=0; i<8; i++)
{
for(int j=0; j<8; j++)
{
for(int k=0; k<8; k++)
{
int x=i+cx[k][0];
int y=j+cx[k][1];
int xx=i+dx[k][0];
int yy=j+dx[k][1];
if(judge(x,y))
{
a[i+j*8][x+y*8]=1;
}
if(judge(xx,yy))
{
b[i+j*8][xx+yy*8]=1;
}
}
}
}
for(int k=0; k<64; k++)
{
for(int i=0; i<64; i++)
{
for(int j=0; j<64; j++)
{
a[i][j]=min(a[i][j],a[i][k]+a[k][j]);
b[i][j]=min(b[i][j],b[i][k]+b[k][j]);
}
}
}
}
int main()
{
init();
while(~scanf("%s",s))
{
int n=strlen(s);
king=s[0]-'A'+(s[1]-'1')*8;
int cnt=0;
for(int i=2; i<n; i+=2)
{
int x=s[i+1]-'1';
int y=s[i]-'A';
rking[cnt++]=x*8+y;
}
int ans=9999999;
for(int i=0;i<64;i++)///终点
{
for(int j=0;j<64;j++)///国王上马点
{
for(int k=0;k<cnt;k++)///国王所上的骑士
{
int sum=0;
for(int l=0;l<cnt;l++)
{
if(l==k)continue;
sum+=a[rking[l]][i];
}
sum+=b[king][j]+a[rking[k]][j]+a[j][i];
ans=min(ans,sum);
}
}
}
printf("%d\n",ans);
}
return 0;
}
poj1178 floyd+枚举的更多相关文章
- poj 1161 Floyd+枚举
题意是: 给出n个点,围成m个区域.从区域到另一个区域间需穿过至少一条边(若两区域相邻)——边连接着两点. 给出这么一幅图,并给出一些点,问从这些点到同一个区域的穿过边数最小值. 解题思路如下: 将区 ...
- POJ 2139 Six Degrees of Cowvin Bacon (Floyd)
题意:如果两头牛在同一部电影中出现过,那么这两头牛的度就为1, 如果这两头牛a,b没有在同一部电影中出现过,但a,b分别与c在同一部电影中出现过,那么a,b的度为2.以此类推,a与b之间有n头媒介牛, ...
- floyd最短路
floyd可以在O(n^3)的时间复杂度,O(n^2)的空间复杂度下求解正权图中任意两点间的最短路长度. 本质是动态规划. 定义f[k][i][j]表示从i出发,途中只允许经过编号小于等于k的点时的最 ...
- ZOJ 1232 【灵活运用FLOYD】 【图DP】
题意: copy自http://blog.csdn.net/monkey_little/article/details/6637805 有A个村子和B个城堡,村子标号是1~A,城堡标号是A+1~B.马 ...
- 简单的floyd——初学
前言: (摘自https://www.cnblogs.com/aininot260/p/9388103.html): 在最短路问题中,如果我们面对的是稠密图(十分稠密的那种,比如说全连接图),计算多 ...
- 套题T3
秋实大哥与线段树 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submit ...
- bzoj千题计划123:bzoj1027: [JSOI2007]合金
http://www.lydsy.com/JudgeOnline/problem.php?id=1027 因为x+y+z=1,所以z=1-x-y 第三维可以忽略 将x,y 看做 平面上的点 简化问题: ...
- code1167 树网的核
floyd+枚举 看点: 1.floyd同时用数组p记录转移节点k,这样知道线段的端点u v就可以得到整条线段 2.任意一点c到线段a b的距离=(d[a][c]+d[c][b]-d[a][b])/2 ...
- APIO2017
商旅 在广阔的澳大利亚内陆地区长途跋涉后,你孤身一人带着一个背包来到了科巴.你被这个城市发达而美丽的市场所 深深吸引,决定定居于此,做一个商人.科巴有个集市,集市用从1到N的整数编号,集市之间通过M条 ...
随机推荐
- AndroidManifest.xml文件详解(meta-data)
http://blog.csdn.net/think_soft/article/details/7567189 语法(SYNTAX): <meta-dataandroid:name=" ...
- js判断上传图片宽高及文件大小
<input id="file" type="file"> <input id="Button1" type=" ...
- 【树形dp】Apple Tree
[poj2486]Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10800 Accepted: 3 ...
- 【扫描线】Gym - 100781G - Goblin Garden Guards
平面上有100000个哥布林和20000个圆,问你不在圆内的哥布林有多少个. 将每个圆从左到右切2r+1次,形成(2r+1)*2个端点,将上端点记作入点,下端点记作出点,再将这些点和那些哥布林一起排序 ...
- [转]SpringMVC入门
目录 介绍 实例 总结 参考资料 介绍 SpringMVC是一款Web MVC框架. 它跟Struts框架类似,是目前主流的Web MVC框架之一. 本文通过实例来介绍SpringMVC的入门知识. ...
- error C2248: 'MyString::pCharArray' : cannot access private member declared in class 'MyString'
std::ostream & operator<<(std::ostream os,const MyString & mystr){os<<mystr.pCha ...
- 启用 Jenkins 持续构建 .NET 程序,关于配置nuget关键点
网上关于 Jenkins + net 的文章一大堆,这里只贴出 配置中的关键点, 第一步: 从官网下载 nuget.exe 安装包进行安装, 如果项目是用 vs2017 开发的 需要特别注意,nuge ...
- Android内存优化7 内存检测工具1 Memory Monitor检测内存泄露
上篇说了一些性能优化的理论部分,主要是回顾一下,有了理论,小平同志又讲了,实践是检验真理的唯一标准,对于内存泄露的问题,现在通过Android Studio自带工具Memory Monitor 检测出 ...
- Linux Shell编程与编辑器使用详解
<Linux Shell编程与编辑器使用详解> 基本信息 作者: 刘丽霞 杨宇 出版社:电子工业出版社 ISBN:9787121207174 上架时间:2013-7-22 出版日期:201 ...
- WebSocket 是什么原理?为什么可以实现持久连接?(转载)
本文转载自知乎,来源如下: 作者:Ovear链接:https://www.zhihu.com/question/20215561/answer/40316953来源:知乎著作权归作者所有.商业转载请联 ...