2017-07-27  08:58:08

writer:pprp

参考书目:张新华的《算法竞赛宝典》

Bellman-Ford算法是求有向图单源最短路径的,dijkstra算法的条件是图中任意一条边的权都是正的;BF算法可以解决存在负边权的图;

算法流程分为三个部分:

  1. 初始化,将除源点外的所有顶点的最短距离的估计值D[i] = +无穷,D[sourse] = 0;
  2. 迭代求解:反复对每条边进行松弛操作,使得每个顶点的最短距离D[i]估计值主讲逼近其最短距离;运行n-1次
  3. 检验负权回路:通过松弛操作判断每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回FALSE表名问题无解;否则返TRUE,输出D[i]的值

例题:虫洞

代码如下:

#include <iostream>

using namespace std;

int w[][],d[];
int n,m; //n 是点的个数, m是边的个数
int change; //? void init()
{
cin >> n >> m;
int x,y,v;
for(int i = ; i <= n ; i++)
for(int j = ; j <=n; j++)
w[i][j] = INT_MAX;
for(int i = ; i <= m; i++)
{
cin >> x >> y >> v;
w[x][y] = v;//单向通道,边的权值为v
}
} void bellman_ford(int x)
{
int i,j,k;
for(i=; i<=n; i++) //initial array d
d[i] = w[x][i];
d[x] = ; //到自己距离为0
for(k=; k<=n-; k++)
for(j = ; j >=n ; j++) //松弛
for(i = ; i <=n ; i++)
if((w[i][j]!=INT_MAX)&&d[i]!=INT_MAX&&d[j]>d[i]+w[i][j])
d[j] = d[i]+w[i][j];
change = ;
for(i =; i<=n; i++) //松弛操作判断是否存在负权回路
for(j=; j<=n; j++)
if(w[i][j]!=INT_MAX&&d[i]!=INT_MAX&&d[j]>d[i]+w[i][j])
change = ;
if(change)
cout <<"Not possoble"<<endl;
else
cout <<"Possible"<<endl;
} int main()
{
init();
bellman_ford();
return ;
}

Bellman-Ford算法 - 有向图单源最短路径的更多相关文章

  1. 【算法】单源最短路径和任意两点最短路径总结(补增:SPFA)

    [Bellman-Ford算法] [算法]Bellman-Ford算法(单源最短路径问题)(判断负圈) 结构: #define MAX_V 10000 #define MAX_E 50000 int ...

  2. 51nod 1445 变色DNA ( Bellman-Ford算法求单源最短路径)

    1445 变色DNA 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 有一只特别的狼,它在每个夜晚会进行变色,研究发现它可以变成N种颜色之一,将这些颜色标号为0,1 ...

  3. Til the Cows Come Home(poj 2387 Dijkstra算法(单源最短路径))

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 32824   Accepted: 11098 Description Bes ...

  4. Dijkstra算法解决单源最短路径

    单源最短路径问题:给定一个带权有向图 G = (V, E), 其中每条边的权是一个实数.另外,还给定 V 中的一个顶点,称为源.现在要计算从源到其他所有各顶点的最短路径长度.这里的长度是指路上各边权之 ...

  5. [数据结构与算法-15]单源最短路径(Dijkstra+SPFA)

    单源最短路径 问题描述 分别求出从起点到其他所有点的最短路径,这次主要介绍两种算法,Dijkstra和SPFA.若无负权优先Dijkstra算法,存在负权选择SPFA算法. Dijkstra算法 非负 ...

  6. 【转】Dijkstra算法(单源最短路径)

    原文:http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html 单源最短路径问题,即在图中求出给定顶点到其它任一顶点的最短路 ...

  7. 【算法】Dijkstra算法(单源最短路径问题)(路径还原) 邻接矩阵和邻接表实现

    Dijkstra算法可使用的前提:不存在负圈. 负圈:负圈又称负环,就是说一个全部由负权的边组成的环,这样的话不存在最短路,因为每在环中转一圈路径总长就会边小. 算法描述: 1.找到最短距离已确定的顶 ...

  8. 【算法】Bellman-Ford算法(单源最短路径问题)(判断负圈)

    单源最短路问题是固定一个起点,求它到其他所有点的最短路的问题. 算法: 设 d[i]  表示 起点 s 离点 i 的最短距离. [1.初始化]  固定起点s,对所有的点 , 如果 i =  s ,  ...

  9. Dijkstra算法详细(单源最短路径算法)

    介绍 对于dijkstra算法,很多人可能感觉熟悉而又陌生,可能大部分人比较了解bfs和dfs,而对dijkstra和floyd算法可能知道大概是图论中的某个算法,但是可能不清楚其中的作用和原理,又或 ...

随机推荐

  1. ZOJ 2676 Network Wars[01分数规划]

    ZOJ Problem Set - 2676 Network Wars Time Limit: 5 Seconds      Memory Limit: 32768 KB      Special J ...

  2. 记Spring-SpringMVC-Mybatis框架搭建

    1.spring相关架包的下载 云盘下载地址:https://pan.baidu.com/s/1o8sk8Ee 官网下载地址:http://repo.springsource.org/libs-rel ...

  3. 高性能Web开发系列

    1. 高性能WEB开发基础 http://www.uml.org.cn/net/201404225.asp 2. 高性能WEB开发进阶(上) http://www.uml.org.cn/net/201 ...

  4. UIButton+Block

    UIButton的一个Category,使用block处理UIControlEvent事件,如常用的TouchUpInside等.代码非原创,也是从网上看到的,用到了实际项目中,目前还没发现什么问题. ...

  5. Java RTTI and Reflection

    Reference: Java编程思想 java 反射(Reflect) Java系列笔记(2) - Java RTTI和反射机制 Java Reflection in Action, 有空再补 -- ...

  6. Storm-源码分析-acker (backtype.storm.daemon.acker)

    backtype.storm.daemon.acker 设计的巧妙在于, 不用分别记录和track, stream过程中所有的tuple, 而只需要track root tuple, 而所有中间过程都 ...

  7. 如何在 window 上面输入特殊字符?

    打开 字符映射表 程序 选中任意一个字符,它会在下方显示该字符的 16进制 转换16进制至10进制,并在输入法打开的状态下,按住 Alt 键输入 10 进制数值即可.

  8. 转!java产生不重复随机数

    private static void testC(int sz) { long startTime = System.currentTimeMillis(); //开始测试时间 Random rd ...

  9. javascript教程2:---DOM操作

    1.DOM 简介 当页面加载时,浏览器会创建页面的文档对象模型(Document Object Model).文档对象模型定义访问和处理 HTML 文档的标准方法.DOM 将 HTML 文档呈现为带有 ...

  10. 我的Android进阶之旅------>解决Android Studio编译后安装apk报错:The APK file does not exist on disk

    1.错误描述 今天用Android Studio编译应用后安装APK的时候,报错了,错误如下所示: The APK file build\outputs\apk\OYP_2.3.4_I2Base_64 ...