HDU2833 最短路 floyd
WuKong
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1800 Accepted Submission(s): 670
One day, Wukong left his home - Mountain of Flower and Fruit, to the Dragon King’s party, at the same time, Tang Monk left Baima Temple to the Lingyin Temple to deliver a lecture. They are both busy, so they will choose the shortest path. However, there may be several different shortest paths between two places. Now the Buddha wants them to encounter on the road. To increase the possibility of their meeting, the Buddha wants to arrange the two routes to make their common places as many as possible. Of course, the two routines should still be the shortest paths.
Unfortunately, the Buddha is not good at algorithm, so he ask you for help.
The input are ended with N=M=0, which should not be processed.
Hint: One possible arrangement is (1-2-3-4-6) for Wukong and (2-3-4) for Tang Monk. The number of common points are 3.
/*
如果两条最短路有公共点,公共点一定是连续的。因此只要找两条最短路最长的公共子序列就行。floyd算出每两点之间的最短路
如果s1,e1与s2,e2之间都存在一个最长的路径mp[i][j]满足mp[s1/s2][i]+mp[i][j]+mp[j][e1/e2]==mp[s1/s2][e1/e2],则i到j的
长度就是答案,只要枚举找到这个中间量即可。
*/
#include<iostream>
#include<cstdio>
using namespace std;
const int MAX=;
int mp[][],num[][],n,m;
int a,b,c,s1,s2,e1,e2;
int main()
{
while(scanf("%d%d",&n,&m)&&(n+m)){
for(int i=;i<=n;i++)
for(int j=;j<=n;j++){
if(i==j){
mp[i][j]==;num[i][j]=;
}
else {mp[i][j]=MAX;num[i][j]=;}
}
for(int i=;i<m;i++){
scanf("%d%d%d",&a,&b,&c);
if(mp[a][b]>c)
mp[a][b]=mp[b][a]=c;
}
scanf("%d%d%d%d",&s1,&e1,&s2,&e2);
for(int k=;k<=n;k++){
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(mp[i][j]>mp[i][k]+mp[k][j]){
mp[i][j]=mp[i][k]+mp[k][j];
num[i][j]=num[i][k]+num[k][j]-;
}
else if(mp[i][j]==mp[i][k]+mp[k][j])
num[i][j]=num[i][k]+num[k][j]-;
}
}
}
int tmp=;
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if((mp[s1][e1]==mp[s1][i]+mp[i][j]+mp[j][e1])&&
(mp[s2][e2]==mp[s2][i]+mp[i][j]+mp[j][e2])&&(num[i][j]>tmp))
tmp=num[i][j];
}
}
printf("%d\n",tmp);
}
return ;
}
HDU2833 最短路 floyd的更多相关文章
- ACM/ICPC 之 最短路-Floyd+SPFA(BFS)+DP(ZOJ1232)
这是一道非常好的题目,融合了很多知识点. ZOJ1232-Adventrue of Super Mario 这一题折磨我挺长时间的,不过最后做出来非常开心啊,哇咔咔咔 题意就不累述了,注释有写,难点在 ...
- 模板C++ 03图论算法 2最短路之全源最短路(Floyd)
3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...
- 最短路 - floyd算法
floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...
- HDU1869---(最短路+floyd)
http://acm.hdu.edu.cn/showproblem.php?pid=1869 思路:最短路+floyd 分析:1 题目是要求所有的数据能否满足“六度分离”,那么我们就想到所有点之间的最 ...
- 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流
原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...
- 【ACM程序设计】求短路 Floyd算法
最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...
- poj 3613 经过k条边最短路 floyd+矩阵快速幂
http://poj.org/problem?id=3613 s->t上经过k条边的最短路 先把1000范围的点离散化到200中,然后使用最短路可以使用floyd,由于求的是经过k条路的最短路, ...
- 最短路--floyd算法模板
floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...
- poj 3216 Repairing Company(最短路Floyd + 最小路径覆盖 + 构图)
http://poj.org/problem?id=3216 Repairing Company Time Limit: 1000MS Memory Limit: 131072K Total Su ...
随机推荐
- 数据库Mysql的学习(一)-启动和进入
数据库:按照数据结构来组织储存和管理数据的仓库. Mysql是关系型数据库管理系统 Mysql安装好之后... mysql的启动 1:通过控制面板里的”服务“找到mysql右键启动即可 2:开始菜单搜 ...
- Android开发-API指南-<permission-tree>
<permission-tree> 英文原文:http://developer.android.com/guide/topics/manifest/permission-tree-elem ...
- selenium实现文件上传方法汇总(AutoIt、win32GUI、sengkeys)---基于python
在使用selenium进行UI自动化测试时,经常会遇到一个关于本地文件上传的问题,解决此问题一般分两种情况: 1. 元素标签为input 2.非input型上传 下面我们分别对着两种情况进行实例分析 ...
- HDU 4300 Clairewd’s message (next函数的应用)
题意:给你一个明文对密文的字母表,在给你一段截获信息,截获信息前半段是密文,后半段是明文,但不清楚它们的分界点在哪里,密文一定是完整的,明文可能是残缺的,求完整的信息串(即完整的密文+明文串). 题解 ...
- POJ 1679 The Unique MST(最小生成树)
Description Given a connected undirected graph, tell if its minimum spanning tree is unique. Definit ...
- 《javascript模式--by Stoyan Stefanov》书摘--汇总
<javascript模式--by Stoyan Stefanov>书摘--基本技巧 http://www.cnblogs.com/liubei/p/JavascriptModeLog1. ...
- 并查集(Union/Find)模板及详解
概念: 并查集是一种非常精巧而实用的数据结构,它主要用于处理一些不相交集合的合并问题.一些常见的用途有求连通子图.求最小生成树的Kruskal 算法和求最近公共祖先等. 操作: 并查集的基本操作有两个 ...
- 浏览器中event.srcElement和event.target的兼容性问题
在IE下,event对象有srcElement属性,但是没有target属性:Firefox下,even对象有target属性,但是没有srcElement属性.. 解决方法:使用obj(obj = ...
- PAT 甲级 1128 N Queens Puzzle
https://pintia.cn/problem-sets/994805342720868352/problems/994805348915855360 The "eight queens ...
- docker中crontab无法运行
yum install -y crontabssed -ri 's/.*pam_loginuid.so/#&/' /etc/pam.d/crond vi /etc/pam.d/crond ...