1.Hadoop简介

Hadoop[hædu:p]实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高传输率(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。

诸多优点

Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。

Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。

Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。

Hadoop 还是可伸缩的,能够处理 PB 级数据。

此外,Hadoop 依赖于社区服务,因此它的成本比较低,任何人都可以使用。

Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:

高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。

高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。

高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。

高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。

低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。

Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。

hadoop大数据处理的意义

Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变形和加载(ETL)方面上的天然优势。Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似这样操作的批处理结果可以直接走向存储。Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务发送(Map)到多个节点上,之后再以单个数据集的形式加载(Reduce)到数据仓库里。

2.架构

Hadoop 由许多元素构成。其最底部是 Hadoop Distributed File System[3](HDFS),它存储 Hadoop 集群中所有存储节点上的文件。HDFS(对于本文)的上一层是MapReduce 引擎,该引擎由 JobTrackers 和 TaskTrackers 组成。

3.集群系统

Hadoop是一个能够对大量数据进行分布式处理的软件框架。但是 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。
Hadoop 是可靠的,因为它假设计算元素和存储会失败,因此它维护多个工作数据副本,确保能够针对失败的节点重新分布处理。
Hadoop 是高效的,因为它以并行的方式工作,通过并行处理加快处理速度。
Hadoop 还是可伸缩的,能够处理 PB 级数据。
此外,Hadoop 依赖于社区服务,因此它的成本比较低,任何人都可以使用。
Hadoop是一个能够让用户轻松架构和使用的分布式计算平台。用户可以轻松地在Hadoop上开发和运行处理海量数据的应用程序。它主要有以下几个优点:
  1. 高可靠性。Hadoop按位存储和处理数据的能力值得人们信赖。
  2. 高扩展性。Hadoop是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以千计的节点中。
  3. 高效性。Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
  4. 高容错性。Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配。
  5. 低成本。与一体机、商用数据仓库以及QlikView、Yonghong Z-Suite等数据集市相比,hadoop是开源的,项目的软件成本因此会大大降低。
Hadoop带有用Java语言编写的框架,因此运行在 Linux 生产平台上是非常理想的。Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
hadoop大数据处理的意义
Hadoop得以在大数据处理应用中广泛应用得益于其自身在数据提取、变形和加载(ETL)方面上的天然优势。Hadoop的分布式架构,将大数据处理引擎尽可能的靠近存储,对例如像ETL这样的批处理操作相对合适,因为类似这样操作的批处理结果可以直接走向存储。Hadoop的MapReduce功能实现了将单个任务打碎,并将碎片任务发送(Map)到多个节点上,之后再以单个数据集的形式加载(Reduce)到数据仓库里。[1]

4.开源实现

Hadoop 的最常见用法之一是 Web 搜索。虽然它不是惟一的软件框架应用程序,但作为一个并行数据处理引擎,它的表现非常突出。Hadoop 最有趣的方面之一是 Map and Reduce 流程,它受到Google开发的启发。这个流程称为创建索引,它将 Web爬行器检索到的文本 Web 页面作为输入,并且将这些页面上的单词的频率报告作为结果。然后可以在整个 Web 搜索过程中使用这个结果从已定义的搜索参数中识别内容。
最简单的 MapReduce应用程序至少包含 3 个部分:一个 Map 函数、一个 Reduce 函数和一个 main 函数。main 函数将作业控制和文件输入/输出结合起来。在这点上,Hadoop 提供了大量的接口和抽象类,从而为 Hadoop应用程序开发人员提供许多工具,可用于调试和性能度量等。
MapReduce 本身就是用于并行处理大数据集的软件框架。MapReduce 的根源是函数性编程中的 map 和 reduce 函数。它由两个可能包含有许多实例(许多 Map 和 Reduce)的操作组成。Map 函数接受一组数据并将其转换为一个键/值对列表,输入域中的每个元素对应一个键/值对。Reduce 函数接受 Map 函数生成的列表,然后根据它们的键(为每个键生成一个键/值对)缩小键/值对列表。
这里提供一个示例,帮助您理解它。假设输入域是 one small step for man,one giant leap for mankind。在这个域上运行 Map 函数将得出以下的键/值对列表:
(one,1) (small,1) (step,1) (for,1) (man,1)

MapReduce 流程的概念流

(one,1) (giant,1) (leap,1) (for,1) (mankind,1)

如果对这个键/值对列表应用 Reduce 函数,将得到以下一组键/值对:
(one,2) (small,1) (step,1) (for,2) (man,1)(giant,1) (leap,1) (mankind,1)
结果是对输入域中的单词进行计数,这无疑对处理索引十分有用。但是,假

显示处理和存储的物理分布的 Hadoop 集群

设有两个输入域,第一个是 one small step for man,第二个是 one giant leap for mankind。您可以在每个域上执行 Map 函数和 Reduce 函数,然后将这两个键/值对列表应用到另一个 Reduce 函数,这时得到与前面一样的结果。换句话说,可以在输入域并行使用相同的操作,得到的结果是一样的,但速度更快。这便是 MapReduce 的威力;它的并行功能可在任意数量的系统上使用。图 2 以区段和迭代的形式演示这种思想。

回到 Hadoop 上,它是如何实现这个功能的?一个代表客户机在单个主系统上启动的 MapReduce应用程序称为 JobTracker。类似于 NameNode,它是 Hadoop 集群中惟一负责控制 MapReduce应用程序的系统。在应用程序提交之后,将提供包含在 HDFS 中的输入和输出目录。JobTracker 使用文件块信息(物理量和位置)确定如何创建其他 TaskTracker 从属任务。MapReduce应用程序被复制到每个出现输入文件块的节点。将为特定节点上的每个文件块创建一个惟一的从属任务。每个 TaskTracker 将状态和完成信息报告给 JobTracker。图 3 显示一个示例集群中的工作分布。
Hadoop 的这个特点非常重要,因为它并没有将存储移动到某个位置以供处理,而是将处理移动到存储。这通过根据集群中的节点数调节处理,因此支持高效的数据处理

5.子项目

Hadoop Common: 在0.20及以前的版本中,包含HDFS、MapReduce和其他项目公共内容,从0.21开始HDFS和MapReduce被分离为独立的子项目,其余内容为Hadoop Common
HDFS: Hadoop分布式文件系统(Distributed File System) - HDFS (Hadoop Distributed File System)
MapReduce并行计算框架,0.20前使用 org.apache.hadoop.mapred 旧接口,0.20版本开始引入org.apache.hadoop.mapreduce的新API
HBase: 类似Google BigTable的分布式NoSQL列数据库。(HBaseAvro已经于2010年5月成为顶级 Apache 项目)
Hive:数据仓库工具,由Facebook贡献。
Zookeeper:分布式锁设施,提供类似Google Chubby的功能,由Facebook贡献。
Avro:新的数据序列化格式与传输工具,将逐步取代Hadoop原有的IPC机制。
Pig: 大数据分析平台,为用户提供多种接口。
Ambari[11]:Hadoop管理工具,可以快捷的监控、部署、管理集群。
Sqoop:于在HADOOP与传统的数据库间进行数据的传递。

Hadoop 介绍的更多相关文章

  1. [Hadoop入门] - 1 Ubuntu系统 Hadoop介绍 MapReduce编程思想

    Ubuntu系统 (我用到版本号是140.4) ubuntu系统是一个以桌面应用为主的Linux操作系统,Ubuntu基于Debian发行版和GNOME桌面环境.Ubuntu的目标在于为一般用户提供一 ...

  2. Hadoop介绍及最新稳定版Hadoop 2.4.1下载地址及单节点安装

     Hadoop介绍 Hadoop是一个能对大量数据进行分布式处理的软件框架.其基本的组成包括hdfs分布式文件系统和可以运行在hdfs文件系统上的MapReduce编程模型,以及基于hdfs和MapR ...

  3. 1.Hadoop介绍

    1. Hadoop介绍 1.1 什么是Hadoop 开源的,可靠的,分布式的,可伸缩的 提供的功能: 利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理 1.2 处理方式 大众角度 数 ...

  4. 在HDInsight中的Hadoop介绍

    在HDInsight中的Hadoop介绍 概览 Azure的HDInsight是,部署和规定的Apache™Hadoop®集群在云中,提供用于管理,分析和大数据报告软件框架中的服务. 大数据 数据被描 ...

  5. Hadoop介绍篇

    Hadoop详解 1.前言 对于初次接触Hadoop的小伙伴来说,Hadoop是一个很陌生的东西,尤其是Hadoop与大数据之间的关联,写这篇文章之前,我也有许多关于Hadoop与大数据的疑惑,接下来 ...

  6. Hadoop记录-hadoop介绍

    1.hadoop是什么? Hadoop 是Apache基金会下一个开源的大数据分布式计算平台,它以分布式文件系统HDFS和MapReduce算法为核心,为用户提供了系统底层细节透明的分布式基础架构. ...

  7. Hadoop介绍-4.Hadoop中NameNode、DataNode、Secondary、NameNode、JobTracker TaskTracker

    Hadoop是一个能够对大量数据进行分布式处理的软体框架,实现了Google的MapReduce编程模型和框架,能够把应用程式分割成许多的 小的工作单元,并把这些单元放到任何集群节点上执行.在MapR ...

  8. Hadoop介绍-3.HDFS介绍和YARN原理介绍

    一. HDFS介绍: Hadoop2介绍 HDFS概述 HDFS读写流程   1.  Hadoop2介绍 Hadoop是Apache软件基金会旗下的一个分布式系统基础架构.Hadoop2的框架最核心的 ...

  9. Hadoop(3)-Hadoop介绍

    Hadoop三大发行版本 Hadoop三大发行版本:Apache.Cloudera.Hortonworks. Apache版本最原始(最基础)的版本,对于入门学习最好. Cloudera在大型互联网企 ...

  10. Hadoop基础——第一弹:Hadoop介绍

    一.基础 1.了解Java.Linux操作系统相关知识 2.如需精进,应为水平要达到一定标准,能够阅读国外相关技术网站,eg:http://hadoop.apache.org/ 二.什么是Hadoop ...

随机推荐

  1. Cassandra 类型转换限制

    原文地址:http://stackoverflow.com/questions/31880381/cassandra-alter-column-type-which-types-are-compati ...

  2. python3中使用python2中cmp函数出现错误

    在python2中我们经常会使用cmp函数来比较一些东西,但是在python3中,你再来使用这个函数的时候,发现就报错了,提示找不到这个函数,这是为啥呢? 答:新版的python已经舍弃这种用法 而在 ...

  3. windows store无法登陆的问题解决方案

    Windows应用商店或商店Apps无法打开或闪退的可选方法 (仅用于10565之前的Windows 10版本) 右键点击任务栏,选择"属性",切换到"导航"选 ...

  4. 适合初学者的嵌入式Linux计划

    俗话说万事开头难,刚开始的时候,你是否根本就不知如何开始,上网查资料被一堆堆新名词搞的找不到北,去图书馆看书也是找不到方向?又是arm,又是linux,又是uboot头都大了,不知道自己究竟从哪里开始 ...

  5. js中斜杠转义

    js中“/”不需要转义. if(myPath.indexOf("/Upload/EmailFile/")!=-1){ alert("有附件!")}

  6. C#操作Excel执行分类多条件汇总合并

    之前发了一片模拟合并,详见模拟Excel同一列相同值的单元格合并 在之前的文章中介绍了思想,其中Excel采用的二维数组模拟,今天花了点时间,学习了一下C#操作Excel,实现了类似的效果! 准备 需 ...

  7. OSG配置捷径,VS2013+WIN10

    在自己电脑上用CMAKE已经编译好了,上传到百度云里面了. 环境是WIN10+VS2013. 链接:http://pan.baidu.com/s/1hrO7GFE 密码:fwkw 解压之后放在C盘或者 ...

  8. 3dContactPointAnnotationTool开发日志(二)

      今天看的时候发现其实www的方式是可以根据指定路径读取本地图片到Image中的.也就是昨天提到的第二种方式.   随便选了个图片做示范: 修改后的代码如下: using System.Collec ...

  9. PokeCats开发者日志(十一)

      现在是PokeCats游戏开发的第六十天的上午,易版权的状态变为了待收证,但愿不久就能送到了吧.

  10. 2018年小米高级 PHP 工程师面试题(模拟考试卷)

    1.通过哪一个函数,可以把错误转换为异常处理? A:set_error_handler B:error_reporting C:error2exception D:catch 正确答案:A 答案分析: ...