BZOJ3680 & 洛谷1337:[JSOI2004]平衡点/吊打XXX——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3680
https://www.luogu.org/problemnew/show/P1337
有n个重物,每个重物系在一条足够长的绳子上。每条绳子自上而下穿过桌面上的洞,然后系在一起。图中X处就是公共的绳结。假设绳子是完全弹性的(不会造成能量损失),桌子足够高(因而重物不会垂到地上),且忽略所有的摩擦。
问绳结X最终平衡于何处。
注意:桌面上的洞都比绳结X小得多,所以即使某个重物特别重,绳结X也不可能穿过桌面上的洞掉下来,最多是卡在某个洞口处。
学一发乱搞。
当整个系统稳定的时候,其能量肯定是最小的,而能量取决于每个物品的高度*重量。
如果这个值越大则能量就越大。
当然高度=桌子高度-绳长+物品到结点距离s,前两个都是常量,于是可用s*重量来代替之,当这个值越大则能量越大。
于是拍上一个模拟退火,试图找到能量最小的点就行了。
#include<cmath>
#include<queue>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long double dl;
const int N=1e4+;
const dl T=;
const dl eps=1e-;
const dl delta=0.99;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct iron{
dl x,y,w;
}a[N];
int n;
dl xx,yy,t,ans=9e18;
inline dl suan(dl x,dl y){
dl res=;
for(int i=;i<=n;i++){
dl dx=x-a[i].x,dy=y-a[i].y;
dl dis=sqrt(dx*dx+dy*dy);
res+=dis*a[i].w;
}
return res;
}
void simulate_anneal(){
t=T;
while(t>eps){
dl nx=xx+(rand()*-RAND_MAX)*t;
dl ny=yy+(rand()*-RAND_MAX)*t;
dl nans=suan(nx,ny);
dl dans=nans-ans;
if(dans<-eps){
xx=nx;yy=ny;ans=nans;
}else if(rand()<exp(-dans/t)*RAND_MAX){
xx=nx;yy=ny;
}
t*=delta;
}
}
int main(){
srand();
n=read();
for(int i=;i<=n;i++){
a[i].x=read(),a[i].y=read(),a[i].w=read();
xx+=a[i].x,yy+=a[i].y;
}
xx/=n,yy/=n;
simulate_anneal();
printf("%.3Lf %.3Lf\n",xx,yy);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ3680 & 洛谷1337:[JSOI2004]平衡点/吊打XXX——题解的更多相关文章
- 洛谷 P1337 [JSOI2004]平衡点 / 吊打XXX
洛谷 P1337 [JSOI2004]平衡点 / 吊打XXX 点击进入FakeHu的模拟退火博客 神仙模拟退火...去看fakehu的博客吧...懒得写了... 因为精度问题要在求得的最优解附近(大约 ...
- 洛谷 P1337 [JSOI2004]平衡点 / 吊打XXX 解题报告
P1337 [JSOI2004]平衡点 / 吊打XXX 题目描述 有 \(n\) 个重物,每个重物系在一条足够长的绳子上.每条绳子自上而下穿过桌面上的洞,然后系在一起.\(X\)处就是公共的绳结.假设 ...
- 洛谷P1337 [JSOI2004]平衡点 / 吊打XXX(模拟退火)
题目描述 如图:有n个重物,每个重物系在一条足够长的绳子上.每条绳子自上而下穿过桌面上的洞,然后系在一起.图中X处就是公共的绳结.假设绳子是完全弹性的(不会造成能量损失),桌子足够高(因而重物不会垂到 ...
- [洛谷P1337][JSOI2004]平衡点 / 吊打XXX
题目大意:有$n$个重物,每个重物系在一条绳子上.所有绳子系在一起,问绳结最终平衡于何处. 题解:$NOIP$前学学模拟退火,但发现我脸好黑啊... 卡点:脸黑 C++ Code: #include ...
- 洛谷P1337 [JSOI2004]平衡点 / 吊打XXX(模拟退火)
传送门 先坑着,联赛活着回来的话我就写(意思就是我绝对不会写了) //minamoto #include<cstdio> #include<cmath> #include< ...
- [JSOI2004]平衡点 / 吊打XXX 题解
预备概念: 金属退火:将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却 温度:一个逐渐减小的参数,表示接受次优解的概率 模拟退火是一种解决复杂问题的算法,相当于贪心,但以一个逐渐减小的该率接 ...
- luogu1337 [JSOI2004]平衡点 / 吊打XXX(模拟退火)
推荐博客:模拟退火总结(模拟退火)by FlashHu.模拟退火的原理,差不多就是不断地由现有的值不断地试探,不断地转到更优的值,并在一定概率下转到较差的值. 题目传送门:luogu1337 [JSO ...
- 洛谷P1337 【[JSOI2004]平衡点 / 吊打XXX】(模拟退火)
洛谷题目传送门 很可惜,充满Mo力的Mo拟退火并不是正解.不过这是一道最适合开始入手Mo拟退火的好题. 对模拟退火还不是很清楚的可以看一下 这道题还真和能量有点关系.达到平衡稳态的时候,物体的总能量应 ...
- [BZOJ3680][JSOI2004]平衡点 / 吊打XXX
BZOJ Luogu (洛谷和BZOJ上的数据范围不同,可能需要稍微调一调参数) sol 这题的参数调得我心累 模拟退火的模型可以形象地理解为:不断降温的小球在一个凹凸不平的平面上反复横跳,根据万有引 ...
随机推荐
- 前端开发工程师 - 03.DOM编程艺术 - 期末考试
期末考试客观题 返回 倒计时: 01:24 1 单选(2分) 以下选项中不是节点类型的是 A. COMMENT_NODE B. DOCUMENT_NODE C. BODY_NODE D. E ...
- Navicat和DBeaver的查询快捷键
1.Navicat for MySQL(连接MySQL数据库的工具) ctrl + r 执行查询页中所有的sql语句 ctrl + shift + r 只运行选中的sql语句 2.DBeaver(支持 ...
- stm32之SPI通信协议
SPI (Serial Peripheral interface),顾名思义就是串行外围设备接口.SPI是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为P ...
- python程序设计——函数设计与调用
一.函数定义与调用 def 函数名([参数列表]): '''注释''' 函数体 # 输出小于n的斐波那契数 >>def fib(n): a,b=1,1 while a < n: pr ...
- [转]Excel数据转化为sql脚本
在实际项目开发中,有时会遇到客户让我们把大量Excel数据导入数据库的情况.这时我们就可以通过将Excel数据转化为sql脚本来批量导入数据库. 1 在数据前插入一列单元格,用来拼写sql语句. 具体 ...
- 开源自动驾驶仿真平台 AirSim (1) - Unreal Engine
AirSim 官方Github: https://github.com/Microsoft/AirSim AirSim 是微软的开源自动驾驶仿真平台(其实它还能做很多事情,这里主要用于自动驾驶仿真研究 ...
- 理解glance
摘要: 本节介绍 OpenStack Image 服务 Glance 的基本概念. OpenStack 由 Glance 提供 Image 服务. 理解 Image 要理解 Image Service ...
- ThinkPHP - 3 - IDE选择以及Eclipse PDT打开ThinkPHP项目
ThinkPHP框架已部署到SAE(新浪云),且代码已获取到本地.眼前面临的问题就是,对ThinkPHP项目选择哪种开发工具(IDE)? 经过简单的查找比较,以及电脑里已装有Eclipse的因素,遂决 ...
- [git] Git in Practice
Work flow with git and github Work with Remotes Check the current status git status Check the latest ...
- 《C++面试知识点》
[动态内存] 1. 由内置指针管理的动态内存(即new和delete管理动态内存),直到被显式释放之前它都是存在的.假设该指针变量被销毁,那该内存将不会自动释放(即所谓的“内存泄漏”). 2. 可以用 ...