题目描述

作为体育委员,C君负责这次运动会仪仗队的训练。仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图)。       

现在,C君希望你告诉他队伍整齐时能看到的学生人数。

输入

共一个数N。

输出

共一个数,即C君应看到的学生人数。

样例输入

4

样例输出

9


题解

欧拉函数

将左下角的点的坐标视为(0,0),则如果一个除(0,1)和(1,0)以外点能够被看见,它的横纵坐标必定互质。

那么可以盖住左上半部分和对角线,那么每个横坐标i对应的能看到的点的个数就是φ(i)。

然后快筛欧拉函数即可。

别忘了还有(1,1)这个点,所以答案为2*∑φ(i)+1(1≤i<n)=2*∑φ(i)+3(2≤i<n)。

#include <cstdio>
#include <algorithm>
using namespace std;
int f[40010] , sta[40010] , tot;
bool p[40010];
int main()
{
int n , i , j , ans = 0;
scanf("%d" , &n);
for(i = 2 ; i < n ; i ++ )
{
if(!p[i]) sta[++tot] = i , f[i] = i - 1;
for(j = 1 ; j <= tot && i * sta[j] <= n ; j ++ )
{
p[i * sta[j]] = 1;
if(i % sta[j] == 0)
{
f[i * sta[j]] = f[i] * sta[j];
break;
}
else f[i * sta[j]] = f[i] * (sta[j] - 1);
}
ans += f[i];
}
printf("%d\n" , ans * 2 + 3);
return 0;
}

【bzoj2190】[SDOI2008]仪仗队 欧拉函数的更多相关文章

  1. BZOJ2190 [SDOI2008]仪仗队 [欧拉函数]

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  2. [bzoj2190][SDOI2008]仪仗队 ——欧拉函数

    题解 以c点为(0, 0)建立坐标系,可以发现, 当(x,y)!=1,即x,y不互素时,(x,y)点一定会被点(x/n, y/n)遮挡. 所以点(x, y)被看到的充分必要条件是Gcd(x, y) = ...

  3. P2158 [SDOI2008]仪仗队 && 欧拉函数

    P2158 [SDOI2008]仪仗队 题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线 ...

  4. P2158 [SDOI2008]仪仗队 欧拉函数模板

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  5. luogu2158 [SDOI2008]仪仗队 欧拉函数

    点 $ (i,j) $ 会看不见当有 $ k|i $ 且 $ k|j$ 时. 然后就成了求欧拉函数了. #include <iostream> #include <cstring&g ...

  6. 洛谷P2158 [SDOI2008]仪仗队 欧拉函数的应用

    https://www.luogu.org/problem/P2158 #include<bits/stdc++.h> #define int long long using namesp ...

  7. BZOJ 2190: [SDOI2008]仪仗队( 欧拉函数 )

    假设C君为(0, 0), 则右上方为(n - 1, n - 1). 一个点(x, y) 能被看到的前提是gcd(x, y) = 1, 所以 answer = ∑ phi(i) * 2 + 2 - 1 ...

  8. 2190: [SDOI2008]仪仗队(欧拉函数)

    2190: [SDOI2008]仪仗队 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3235  Solved: 2089 Description 作 ...

  9. [SDOI2008]仪仗队 (欧拉函数)

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

随机推荐

  1. IoC 依赖注入容器 Unity

    原文:IoC 依赖注入容器 Unity IoC 是什么? 在软件工程领域,“控制反转(Inversion of Control,缩写为IoC)”是一种编程技术,表述在面向对象编程中,可描述为在编译时静 ...

  2. MapWinGIS使用

    .net语言中使用MapWinGIS.ocx http://www.cnblogs.com/kekec/archive/2011/03/30/1999709.html 基于MapWinGis的开发探索 ...

  3. 卸载Oracle 11g

    卸载oracle只需要执行deinstall.ba即可 运行.bat文件 按照提示步骤进行卸载 .bat文件所在目录需要手动删除,需要在程序管理器里面关掉Oracle的进程,在删除当前文件夹

  4. vuecli结合eslint静态检查

    vuecli结合eslint静态检查 搭建vue项目开发可能选择vue-cli项目脚手架快速创建vue项目.(https://github.com/vuejs/vue-cli) 安装vue-cli n ...

  5. 初学DirectX(1)

    初学Direct X (1) Direct3D设备用于访问视频卡的帧缓冲区,以及后台缓冲区.由于IDE是vs2013,默认安装了direct 9,只需要在使用头文件(1)并像使用库文件(2)即可 #i ...

  6. Dos命令以及相关文件的访问

    1.转到相关目录 有时候想从当前目录转到D盘,用此目录cd d:是没有用的, 最好用cd /d d:是可以的 2.查看目录文件 dir 3.往服务器上传文件文件 通过文件浏览器上传文件,只适用于Win ...

  7. Siki_Unity_1-6_C#编程初级教程(未学)

    Unity 1-6 C#编程初级教程 任务1:C#和.Net框架 C#是.Net里的一个成分 2002年微软发布第一个.Net框架(多平台,行业标准,安全性) .Net框架 IDE编程工具 --产生- ...

  8. Python全栈 MongoDB 数据库(Mongo、 正则基础、一篇通)

                  终端命令:       在线安装:         sudo apt-get install mongodb         默认安装路径 :  /var/lib/mong ...

  9. 数数字 (Digit Counting,ACM/ICPC Dannang 2007 ,UVa1225)

    题目描述:算法竞赛入门经典习题3-3 #include <stdio.h> #include <string.h> int main(int argc, char *argv[ ...

  10. pthon web框架flask(一)

    pthon web框架优劣: 知乎上有一个讨论Python 有哪些好的 Web 框架?,从这个讨论中最后我选择了flask,原因是: Django,流行但是笨重,还麻烦,人生苦短,肯定不选 web.p ...