【POJ2976】Dropping Tests(分数规划)

题面

Vjudge

翻译在\(Vjudge\)上有(而且很皮)

题解

简单的\(01\)分数规划

需要我们做的是最大化\(\frac{\sum a[i]}{\sum b[i]}\)

考虑二分答案

将最大化问题转换为判定问题

\(\sum{a[i]}-mid\sum{b[i]}\geq 0\)

因为所有选定的\(i\)是一样的

所以可以将权值化为\(a[i]-mid·b[i]\),这样只需要贪心的选择最大的那部分检查是否大于零就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int a[MAX],b[MAX],n,K;
double c[MAX];
int main()
{
while(233)
{
n=read();K=read();
if(!n&&!K)break;
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)b[i]=read();
double l=0,r=100;
while(r-l>1e-5)
{
double mid=(l+r)/2;
for(int i=1;i<=n;++i)c[i]=a[i]-mid*b[i];
sort(&c[1],&c[n+1]);
double t=0;
for(int i=n;i>K;--i)t+=c[i];
if(t>=0)l=mid;
else r=mid;
}
printf("%.0f\n",l*100);
}
return 0;
}

【POJ2976】Dropping Tests(分数规划)的更多相关文章

  1. POJ2976 Dropping tests(二分+精度问题)

    ---恢复内容开始--- POJ2976 Dropping tests 这个题就是大白P144页的一个变形,二分枚举x,对a[i]-x*b[i]从大到小进行排序,选取前n-k个判断和是否大于等于0,若 ...

  2. [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)

    题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...

  3. POJ2976 Dropping tests —— 01分数规划 二分法

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  4. poj2976(01分数规划)

    poj2976 题意 给出 a b 数组,一共 n 对数,其中最多可以去掉 k 对,问怎样使剩下比率(原始比率是 $ \frac{\sum_{i=1}^{n} a}{\sum_{i=1}^{n} b} ...

  5. [POJ2976] Dropping tests

    传送门:>Here< 题意:给出长度相等的数组a和b,定义他们的和为$\dfrac{a_1+a_2+...+a_n}{b_1+b_2+...+b_n}$.现在可以舍弃k对元素(一对即$a[ ...

  6. POJ2976 Dropping tests(01分数规划)

    题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...

  7. poj2976 Dropping tests(01分数规划 好题)

    https://vjudge.net/problem/POJ-2976 又是一波c++AC,g++WA的题.. 先推导公式:由题意得 Σa[i]/Σb[i]<=x,二分求最大x.化简为Σ(a[i ...

  8. POJ2976 Dropping tests(01分数规划)

    题目大概说给n个二元组Ai和Bi,要去掉k个,求余下的100*∑Ai/∑Bi的最大值. 假设要的最大的值是ans,令Di=Ai-ans*∑Bi,对Di排序取最大的n-k个,如果∑Ai-ans*∑Bi& ...

  9. POJ2976 Dropping tests 01分数规划

    裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...

  10. POJ2976Dropping tests(分数规划)

    传送门 题目大意:n个二元组a[i],b[i],去掉k个,求sigma a[i]/ sigma b[i]的最大值 代码: #include<iostream> #include<cs ...

随机推荐

  1. 开发Windows服务

          在开发Windows服务时需要注意一点,如果在开发完成后,需要通过命令来进行安装的,那么在开发的时候,需要在服务类上面添加一个安装文件.如下图:               添加完成后,就 ...

  2. 问题:Visual Studio 2017 无法推送到github:The requested URL returned error: 403

    问题: Visual Studio 2017 无法推送到github:The requested URL returned error: 403 原因分析: Visual Studio 2017记录的 ...

  3. Entity Framework Core 选择数据表的外键

    entityTypeBuilder .HasOne<GeraeteArt>() .WithMany(p => p.Geraete) .HasForeignKey(b => b. ...

  4. 【WXS全局对象】Number

    属性: 名称 说明 Number.MAX_VALUE 返回JS中可表示的最大的数.它的近似值为 1.7976931348623157 x 10308. Number.MIN_VALUE 返回JS中可表 ...

  5. mpvue笔记

    简介: mpvue 修改了 Vue.js 的 runtime 和 compiler 实现,为小程序开发引入 Vue.js 开发体验 我觉得就像scss一样,写的时候方便,最后还是要转成css文件 搭建 ...

  6. JS原型链与继承别再被问倒了

    原文:详解JS原型链与继承 摘自JavaScript高级程序设计: 继承是OO语言中的一个最为人津津乐道的概念.许多OO语言都支持两种继承方式: 接口继承 和 实现继承 .接口继承只继承方法签名,而实 ...

  7. 【转】UTF8字符串转换为汉字 c#,转自游戏开发主席

    using System; /// <summary> /// UTF8字符串转换为汉字用的类 /// 转换如"\\u8d35"之类的字符串为对应的汉字 /// < ...

  8. Bcp 使用心得【转】

    在做这方面研究的时候,的确遇到了不少麻烦. 首先在做bcp的时候,要开通大数据量访问权限 一.基于sql语句的导入导出 如果是基于SQL语句的导入导出,需要使用存储过程“master..xp_cmds ...

  9. Linux 150命令之 文件和目录操作命令 cd pwd cp mv touch

    cd 切换目录 cd 目录 [root@mysql ~]# cd / [root@mysql /]# ls application bin class dev home lib64 media nfs ...

  10. Python高级编程-多线程

    (一)进程线程概述: 很多同学都听说过,现代操作系统比如Mac OS X,UNIX,Linux,Windows等,都是支持“多任务”的操作系统. 什么叫“多任务”呢?简单地说,就是操作系统可以同时运行 ...