【POJ2976】Dropping Tests(分数规划)

题面

Vjudge

翻译在\(Vjudge\)上有(而且很皮)

题解

简单的\(01\)分数规划

需要我们做的是最大化\(\frac{\sum a[i]}{\sum b[i]}\)

考虑二分答案

将最大化问题转换为判定问题

\(\sum{a[i]}-mid\sum{b[i]}\geq 0\)

因为所有选定的\(i\)是一样的

所以可以将权值化为\(a[i]-mid·b[i]\),这样只需要贪心的选择最大的那部分检查是否大于零就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int a[MAX],b[MAX],n,K;
double c[MAX];
int main()
{
while(233)
{
n=read();K=read();
if(!n&&!K)break;
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)b[i]=read();
double l=0,r=100;
while(r-l>1e-5)
{
double mid=(l+r)/2;
for(int i=1;i<=n;++i)c[i]=a[i]-mid*b[i];
sort(&c[1],&c[n+1]);
double t=0;
for(int i=n;i>K;--i)t+=c[i];
if(t>=0)l=mid;
else r=mid;
}
printf("%.0f\n",l*100);
}
return 0;
}

【POJ2976】Dropping Tests(分数规划)的更多相关文章

  1. POJ2976 Dropping tests(二分+精度问题)

    ---恢复内容开始--- POJ2976 Dropping tests 这个题就是大白P144页的一个变形,二分枚举x,对a[i]-x*b[i]从大到小进行排序,选取前n-k个判断和是否大于等于0,若 ...

  2. [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)

    题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...

  3. POJ2976 Dropping tests —— 01分数规划 二分法

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  4. poj2976(01分数规划)

    poj2976 题意 给出 a b 数组,一共 n 对数,其中最多可以去掉 k 对,问怎样使剩下比率(原始比率是 $ \frac{\sum_{i=1}^{n} a}{\sum_{i=1}^{n} b} ...

  5. [POJ2976] Dropping tests

    传送门:>Here< 题意:给出长度相等的数组a和b,定义他们的和为$\dfrac{a_1+a_2+...+a_n}{b_1+b_2+...+b_n}$.现在可以舍弃k对元素(一对即$a[ ...

  6. POJ2976 Dropping tests(01分数规划)

    题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...

  7. poj2976 Dropping tests(01分数规划 好题)

    https://vjudge.net/problem/POJ-2976 又是一波c++AC,g++WA的题.. 先推导公式:由题意得 Σa[i]/Σb[i]<=x,二分求最大x.化简为Σ(a[i ...

  8. POJ2976 Dropping tests(01分数规划)

    题目大概说给n个二元组Ai和Bi,要去掉k个,求余下的100*∑Ai/∑Bi的最大值. 假设要的最大的值是ans,令Di=Ai-ans*∑Bi,对Di排序取最大的n-k个,如果∑Ai-ans*∑Bi& ...

  9. POJ2976 Dropping tests 01分数规划

    裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...

  10. POJ2976Dropping tests(分数规划)

    传送门 题目大意:n个二元组a[i],b[i],去掉k个,求sigma a[i]/ sigma b[i]的最大值 代码: #include<iostream> #include<cs ...

随机推荐

  1. elasticsearch安装中文分词器

    1. 分词器的安装 ./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/rele ...

  2. PHP程序员如何理解依赖注入容器(dependency injection container)

    背景知识 传统的思路是应用程序用到一个Foo类,就会创建Foo类并调用Foo类的方法,假如这个方法内需要一个Bar类,就会创建Bar类并调用Bar类的方法,而这个方法内需要一个Bim类,就会创建Bim ...

  3. 使用git bash编译安装sysbench时遇到的坑

      Preface       When I was compiling the sysbench just now,I encountered some failures in the preced ...

  4. php导出excel表格的使用

    网站后台有很多列表数据,常常都会有导出excel表格的需求,和大家分享一个实用的导出excel表格方法: 不多说,上代码: /** * @param array $data 要导出的数据 * @par ...

  5. 关于@media不生效的问题和meta总结

    1:之前做的是两套页面.现在改成响应式布局.发现加上 @media only screen and (max-width: 500px) {    .gridmenu {        width:1 ...

  6. vector的基础使用

    vector是一个容器,实现动态数组. 相似点:下标从0开始. 不同点:vector创建对象后,容器大小会随着元素的增多或减少而变化. 基础操作: 1.使用vector需要添加头文件,#include ...

  7. Trie 树——搜索关键词提示

    当你在搜索引擎中输入想要搜索的一部分内容时,搜索引擎就会自动弹出下拉框,里面是各种关键词提示,这个功能是怎么实现的呢?其实底层最基本的就是 Trie 树这种数据结构. 1. 什么是 "Tri ...

  8. @Configuration和@Bean

    @Configuration可理解为用spring的时候xml里面的标签 @Bean可理解为用spring的时候xml里面的标签 Spring Boot不是spring的加强版,所以@Configur ...

  9. HADOOP docker(十):hdfs 结构体系

    1.简介2.namenode和datanode3.The File System Namespace 文件系统命名空间4.Data Replication 数据复制5.Replica Placemen ...

  10. Python练习——循环2

    1.求1~100之间能被7整除,但不能同时被5整除的所有整数 . for i in range(1,101): if i%7 == 0 and i%5 !=0: print(i) 2.输出“水仙花数” ...