【POJ2976】Dropping Tests(分数规划)
【POJ2976】Dropping Tests(分数规划)
题面
Vjudge
翻译在\(Vjudge\)上有(而且很皮)
题解
简单的\(01\)分数规划
需要我们做的是最大化\(\frac{\sum a[i]}{\sum b[i]}\)
考虑二分答案
将最大化问题转换为判定问题
\(\sum{a[i]}-mid\sum{b[i]}\geq 0\)
因为所有选定的\(i\)是一样的
所以可以将权值化为\(a[i]-mid·b[i]\),这样只需要贪心的选择最大的那部分检查是否大于零就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int a[MAX],b[MAX],n,K;
double c[MAX];
int main()
{
while(233)
{
n=read();K=read();
if(!n&&!K)break;
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)b[i]=read();
double l=0,r=100;
while(r-l>1e-5)
{
double mid=(l+r)/2;
for(int i=1;i<=n;++i)c[i]=a[i]-mid*b[i];
sort(&c[1],&c[n+1]);
double t=0;
for(int i=n;i>K;--i)t+=c[i];
if(t>=0)l=mid;
else r=mid;
}
printf("%.0f\n",l*100);
}
return 0;
}
【POJ2976】Dropping Tests(分数规划)的更多相关文章
- POJ2976 Dropping tests(二分+精度问题)
---恢复内容开始--- POJ2976 Dropping tests 这个题就是大白P144页的一个变形,二分枚举x,对a[i]-x*b[i]从大到小进行排序,选取前n-k个判断和是否大于等于0,若 ...
- [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)
题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...
- POJ2976 Dropping tests —— 01分数规划 二分法
题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total S ...
- poj2976(01分数规划)
poj2976 题意 给出 a b 数组,一共 n 对数,其中最多可以去掉 k 对,问怎样使剩下比率(原始比率是 $ \frac{\sum_{i=1}^{n} a}{\sum_{i=1}^{n} b} ...
- [POJ2976] Dropping tests
传送门:>Here< 题意:给出长度相等的数组a和b,定义他们的和为$\dfrac{a_1+a_2+...+a_n}{b_1+b_2+...+b_n}$.现在可以舍弃k对元素(一对即$a[ ...
- POJ2976 Dropping tests(01分数规划)
题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...
- poj2976 Dropping tests(01分数规划 好题)
https://vjudge.net/problem/POJ-2976 又是一波c++AC,g++WA的题.. 先推导公式:由题意得 Σa[i]/Σb[i]<=x,二分求最大x.化简为Σ(a[i ...
- POJ2976 Dropping tests(01分数规划)
题目大概说给n个二元组Ai和Bi,要去掉k个,求余下的100*∑Ai/∑Bi的最大值. 假设要的最大的值是ans,令Di=Ai-ans*∑Bi,对Di排序取最大的n-k个,如果∑Ai-ans*∑Bi& ...
- POJ2976 Dropping tests 01分数规划
裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...
- POJ2976Dropping tests(分数规划)
传送门 题目大意:n个二元组a[i],b[i],去掉k个,求sigma a[i]/ sigma b[i]的最大值 代码: #include<iostream> #include<cs ...
随机推荐
- 鸡啄米:C++编程之十三学习之类与对象,类的声明,成员的访问控制
1. 本次学习鸡啄米课程第13篇,把比较重要的学习记录下来,以敦促自己更好的学习.推荐他们的网址学习:http://www.jizhuomi.com/school/c/97.html 2. 在面向过程 ...
- Odd CSS syntax. [class^='icon-'], [class*=' icon-']
原文: https://stackoverflow.com/questions/20322740/odd-css-syntax-class-icon-class-icon I am going thr ...
- PyCharm添加Selenium与Appium类库
PyCharm添加Selenium与Appium依赖, 不需要用pip去安装!
- Python全栈 正则表达式(re模块正则接口全方位详解)
re模块是Python的标准库模块 模块正则接口的整体模式 re.compile 返回regetx对象 finditer fullmatch match search 返回 match对象 match ...
- Python数据分析实战-Boston Public Schools GEO数据分析-Part1
项目目标: Boston Public Schools Geo数据是来自于Boston地区的公共学校的数据,具体描述了学校的坐标,名字,类型等.基于此数据,我们可以学习一些基本的Python数据分析的 ...
- opencv-学习笔记(3)
opencv-学习笔记(3) 这章讲了 图像加法 opencv测试效率 IPYTHON测试效率 图像加法 cv2.add() 要求,两图片必须大小类型相同 然后是图像混合cv2.addWeighted ...
- parity注记词和地址
remix skilled curled cobweb tactics koala bartender precinct energize exes ridden cohesive 0x00EeC52 ...
- Python学习之路4 - 文件操作&编码转换
文件操作 文件操作大概分三步: 把文件打开. 操作文件. 把文件关上. 打开文件 打开文件用open()函数,打开成功后返回一个资源,具体语法如下. open(要打开的文件,打开方式,打开文件的格式, ...
- wwnjld团队第二轮迭代成员分数
2014-01-05 第二轮迭代团队内成员分数如下(依据分数分配规则以及团队会议协商所得结果): 吴渊渊 23 汪仁贵 21.5 高小洲 19.5 聂建 22.5 吕家辉 23.5 程志 10
- lintcode-170-旋转链表
170-旋转链表 给定一个链表,旋转链表,使得每个节点向右移动k个位置,其中k是一个非负数 样例 给出链表1->2->3->4->5->null和k=2 返回4-> ...