【POJ2976】Dropping Tests(分数规划)
【POJ2976】Dropping Tests(分数规划)
题面
Vjudge
翻译在\(Vjudge\)上有(而且很皮)
题解
简单的\(01\)分数规划
需要我们做的是最大化\(\frac{\sum a[i]}{\sum b[i]}\)
考虑二分答案
将最大化问题转换为判定问题
\(\sum{a[i]}-mid\sum{b[i]}\geq 0\)
因为所有选定的\(i\)是一样的
所以可以将权值化为\(a[i]-mid·b[i]\),这样只需要贪心的选择最大的那部分检查是否大于零就行了
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int a[MAX],b[MAX],n,K;
double c[MAX];
int main()
{
while(233)
{
n=read();K=read();
if(!n&&!K)break;
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)b[i]=read();
double l=0,r=100;
while(r-l>1e-5)
{
double mid=(l+r)/2;
for(int i=1;i<=n;++i)c[i]=a[i]-mid*b[i];
sort(&c[1],&c[n+1]);
double t=0;
for(int i=n;i>K;--i)t+=c[i];
if(t>=0)l=mid;
else r=mid;
}
printf("%.0f\n",l*100);
}
return 0;
}
【POJ2976】Dropping Tests(分数规划)的更多相关文章
- POJ2976 Dropping tests(二分+精度问题)
---恢复内容开始--- POJ2976 Dropping tests 这个题就是大白P144页的一个变形,二分枚举x,对a[i]-x*b[i]从大到小进行排序,选取前n-k个判断和是否大于等于0,若 ...
- [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)
题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...
- POJ2976 Dropping tests —— 01分数规划 二分法
题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS Memory Limit: 65536K Total S ...
- poj2976(01分数规划)
poj2976 题意 给出 a b 数组,一共 n 对数,其中最多可以去掉 k 对,问怎样使剩下比率(原始比率是 $ \frac{\sum_{i=1}^{n} a}{\sum_{i=1}^{n} b} ...
- [POJ2976] Dropping tests
传送门:>Here< 题意:给出长度相等的数组a和b,定义他们的和为$\dfrac{a_1+a_2+...+a_n}{b_1+b_2+...+b_n}$.现在可以舍弃k对元素(一对即$a[ ...
- POJ2976 Dropping tests(01分数规划)
题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...
- poj2976 Dropping tests(01分数规划 好题)
https://vjudge.net/problem/POJ-2976 又是一波c++AC,g++WA的题.. 先推导公式:由题意得 Σa[i]/Σb[i]<=x,二分求最大x.化简为Σ(a[i ...
- POJ2976 Dropping tests(01分数规划)
题目大概说给n个二元组Ai和Bi,要去掉k个,求余下的100*∑Ai/∑Bi的最大值. 假设要的最大的值是ans,令Di=Ai-ans*∑Bi,对Di排序取最大的n-k个,如果∑Ai-ans*∑Bi& ...
- POJ2976 Dropping tests 01分数规划
裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...
- POJ2976Dropping tests(分数规划)
传送门 题目大意:n个二元组a[i],b[i],去掉k个,求sigma a[i]/ sigma b[i]的最大值 代码: #include<iostream> #include<cs ...
随机推荐
- 图片文件转换成Base64编码实现ajax提交图片
//上传头像图片 function uploadHead(imgPath) { console.log("imgPath = " + imgPath); var image = n ...
- Kubernetes网络方案的三大类别和六个场景
欢迎访问网易云社区,了解更多网易技术产品运营经验. 本文章根据网易云资深解决方案架构师 王必成在云原生用户大会上的分享整理. 今天我将分享个人对于网络方案的理解,以及网易云在交付 Kubernetes ...
- ORA-15032、ORA-15071错误处理
遇到一下错误 ERROR at line 1: ORA-15032: not all alterations performed ORA-15071: ASM disk "NOCR_0002 ...
- redux devtools调试工具
项目安装: npm install redux-devtools-extension -dev 谷歌搜索 Redux DevTools 安装: 使用: 主要用到state&Dispatcher ...
- Windows10系统,安装appium之坑
本文主要讲述如何在 Windows10 系统上通过 npm 命令行安装 appium 应该有很多小伙伴在使用cnpm安装appium时遇到过各种报错,比如这样: 相信很多的小伙伴都会遇到这样的报错,导 ...
- Selenium基础之--01(将浏览器最大化,设置浏览器固定宽、高,操控浏览器前进、后退)
1,将浏览器最大化 我们知道调用启动的浏览器不是全屏的,这样不会影响脚本的执行,但是有时候会影响我们"观看"脚本的执行. coding=utf-8 from selenium im ...
- Java Swing学习笔记——创建JFrame
创建显示一个空JFrame import javax.swing.JFrame; public class JFrameDemo extends JFrame{ public JFrameDemo() ...
- 第4章 TCP/IP通信案例:访问Internet上的Web服务器
第4章 TCP/IP通信案例:访问Internet上的Web服务器 4.2 部署代理服务器 书中为了演示访问Internet上的Web服务器的全过程,使用了squid代理服务器程序模拟了一个代理服务器 ...
- 前端开发工程师 - 01.页面制作 - 第3章.HTML
第3章--HTML HTML简介 Hyper Text Markup Language:超文本标记语言--用于标记网页的内容 history: html(1991)雏形 -> html4.01( ...
- 【WXS全局对象】Number
属性: 名称 说明 Number.MAX_VALUE 返回JS中可表示的最大的数.它的近似值为 1.7976931348623157 x 10308. Number.MIN_VALUE 返回JS中可表 ...