【POJ2976】Dropping Tests(分数规划)

题面

Vjudge

翻译在\(Vjudge\)上有(而且很皮)

题解

简单的\(01\)分数规划

需要我们做的是最大化\(\frac{\sum a[i]}{\sum b[i]}\)

考虑二分答案

将最大化问题转换为判定问题

\(\sum{a[i]}-mid\sum{b[i]}\geq 0\)

因为所有选定的\(i\)是一样的

所以可以将权值化为\(a[i]-mid·b[i]\),这样只需要贪心的选择最大的那部分检查是否大于零就行了

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 1111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int a[MAX],b[MAX],n,K;
double c[MAX];
int main()
{
while(233)
{
n=read();K=read();
if(!n&&!K)break;
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)b[i]=read();
double l=0,r=100;
while(r-l>1e-5)
{
double mid=(l+r)/2;
for(int i=1;i<=n;++i)c[i]=a[i]-mid*b[i];
sort(&c[1],&c[n+1]);
double t=0;
for(int i=n;i>K;--i)t+=c[i];
if(t>=0)l=mid;
else r=mid;
}
printf("%.0f\n",l*100);
}
return 0;
}

【POJ2976】Dropping Tests(分数规划)的更多相关文章

  1. POJ2976 Dropping tests(二分+精度问题)

    ---恢复内容开始--- POJ2976 Dropping tests 这个题就是大白P144页的一个变形,二分枚举x,对a[i]-x*b[i]从大到小进行排序,选取前n-k个判断和是否大于等于0,若 ...

  2. [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)

    题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...

  3. POJ2976 Dropping tests —— 01分数规划 二分法

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  4. poj2976(01分数规划)

    poj2976 题意 给出 a b 数组,一共 n 对数,其中最多可以去掉 k 对,问怎样使剩下比率(原始比率是 $ \frac{\sum_{i=1}^{n} a}{\sum_{i=1}^{n} b} ...

  5. [POJ2976] Dropping tests

    传送门:>Here< 题意:给出长度相等的数组a和b,定义他们的和为$\dfrac{a_1+a_2+...+a_n}{b_1+b_2+...+b_n}$.现在可以舍弃k对元素(一对即$a[ ...

  6. POJ2976 Dropping tests(01分数规划)

    题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...

  7. poj2976 Dropping tests(01分数规划 好题)

    https://vjudge.net/problem/POJ-2976 又是一波c++AC,g++WA的题.. 先推导公式:由题意得 Σa[i]/Σb[i]<=x,二分求最大x.化简为Σ(a[i ...

  8. POJ2976 Dropping tests(01分数规划)

    题目大概说给n个二元组Ai和Bi,要去掉k个,求余下的100*∑Ai/∑Bi的最大值. 假设要的最大的值是ans,令Di=Ai-ans*∑Bi,对Di排序取最大的n-k个,如果∑Ai-ans*∑Bi& ...

  9. POJ2976 Dropping tests 01分数规划

    裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...

  10. POJ2976Dropping tests(分数规划)

    传送门 题目大意:n个二元组a[i],b[i],去掉k个,求sigma a[i]/ sigma b[i]的最大值 代码: #include<iostream> #include<cs ...

随机推荐

  1. 根据wsdl生成服务端代码

    场景描述 最近在和一家公司做业务接口对接,由他们那边回调我们这边,对方直接扔过来一个webservice的wsdl文件,让我们按照他们的规范来做webservice服务, 大多数的对接应该是我们创建完 ...

  2. 用Anko和Kotlin实现Android上的对话框和警告提示(KAD 24)

    作者:Antonio Leiva 时间:Mar 9, 2017 原文链接:https://antonioleiva.com/dialogs-android-anko-kotlin/ 借助Builder ...

  3. Python零基础入门必知

    Python自学知识点总结 //2018.10.09 1. Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido ...

  4. Android 修改系统默认density

    如你所知在Anroid N 中,系统添加了多个级别的密度值供用户选择. 系统的默认的值就是 ro.sf.lcd_density 同时其他级别的默认值的大小基础也是以默认值为基础,然后乘以不同的比例得到 ...

  5. [CodeForce721C]Journey

    题目描述 Recently Irina arrived to one of the most famous cities of Berland - the Berlatov city. There a ...

  6. 8月leetcode刷题总结

    刷题链接:https://leetcode-cn.com/explore/ 根据leetcode的探索栏目,八月份一直在上面进行刷题.发现算法题真的好难,真-计算机思维. 核心是将现实问题转化为计算机 ...

  7. lintcode166 链表倒数第n个节点

    链表倒数第n个节点 找到单链表倒数第n个节点,保证链表中节点的最少数量为n. 思路:设置两个指针first,second指向head,first指针先向前走n,然后两个指针一起走,first指针走到末 ...

  8. vector的基础使用

    vector是一个容器,实现动态数组. 相似点:下标从0开始. 不同点:vector创建对象后,容器大小会随着元素的增多或减少而变化. 基础操作: 1.使用vector需要添加头文件,#include ...

  9. [转载]CENTOS 6.0 iptables 开放端口80 3306 22端口

    原文地址:6.0 iptables 开放端口80 3306 22端口">CENTOS 6.0 iptables 开放端口80 3306 22端口作者:云淡风轻 #/sbin/iptab ...

  10. 论文笔记:Attentional Correlation Filter Network for Adaptive Visual Tracking

    Attentional Correlation Filter Network for Adaptive Visual Tracking CVPR2017 摘要:本文提出一种新的带有注意机制的跟踪框架, ...