这道题的思路挺简单的……就是可以证明如果要覆盖一个区域内的点,那么一定有一个正方形在这“区域内的点所围成的最大矩形的四个角中的一个”(不要吐槽很多的“的”……),对于长度r是否可以覆盖整个区域内的点,只需要先枚举第一个矩形在“区域内的点所围成的最大矩形的四个角中的哪一个”,然后再枚举下一个点在“区域内的剩余点所围成的最大矩形的四个角中的哪一个”第三个正方形就直接判断余下的点的最大最小差值是否小于r就行了……再然后就直接二分答案了……然后,注意一种情况,就是出现一个或者两个矩形就可以覆盖完整个区域点的情况(可能是因为我傻×于是就被这里坑了一下)……


type
arr=record
x,y:longint;
end;
var
a:array[..]of arr;
i,j,k,l,r,n,mid,maxx,minx,maxy,miny:longint;
vs:array[..]of longint; procedure find(var x1,x2,y1,y2:longint);
begin
x1:=-maxlongint;
x2:=maxlongint;
y1:=-maxlongint;
y2:=maxlongint;
for i:= to n do if vs[i]= then
begin
if a[i].x>x1 then x1:=a[i].x;
if a[i].x<x2 then x2:=a[i].x;
if a[i].y>y1 then y1:=a[i].y;
if a[i].y<y2 then y2:=a[i].y;
end;
end; function dfs(x,y:longint):boolean;
var
maxx,minx,maxy,miny:longint;
begin
find(maxx,minx,maxy,miny);
if minx=maxlongint then exit(true);
if y= then begin
if (maxx-minx<=x) and (maxy-miny<=x) then exit(true);
exit(false);
end; for i:= to n do
if vs[i]= then
if (minx+x>=a[i].x) and (miny+x>=a[i].y) then vs[i]:=y;
if dfs(x,y+) then exit(true);
for i:= to n do
if vs[i]=y then vs[i]:=; for i:= to n do
if vs[i]= then
if (minx+x>=a[i].x) and (maxy-x<=a[i].y) then vs[i]:=y;
if dfs(x,y+) then exit(true);
for i:= to n do
if vs[i]=y then vs[i]:=; for i:= to n do
if vs[i]= then
if (maxx-x<=a[i].x) and (miny+x>=a[i].y) then vs[i]:=y;
if dfs(x,y+) then exit(true);
for i:= to n do
if vs[i]=y then vs[i]:=; for i:= to n do
if vs[i]= then
if (maxx-x<=a[i].x) and (maxy-x<=a[i].y) then vs[i]:=y;
if dfs(x,y+) then exit(true);
for i:= to n do
if vs[i]=y then vs[i]:=;
exit(false);
end; begin
readln(n);
for i:= to n do
readln(a[i].x,a[i].y);
fillchar(vs,sizeof(vs),);
find(maxx,minx,maxy,miny);
l:=;
if maxx-minx>maxy-miny
then r:=maxx-minx
else r:=maxy-miny;
while l<=r do begin
fillchar(vs,sizeof(vs),);
mid:=(l+r)>>;
if dfs(mid,) then r:=mid-
else l:=mid+;
end;
writeln(l);
readln;
end.

【以前的空间】bzoj 1052 [HAOI2007]覆盖问题的更多相关文章

  1. BZOJ 1052: [HAOI2007]覆盖问题

    BZOJ 1052: [HAOI2007]覆盖问题 题意:给定平面上横纵坐标在-1e9~1e9内的20000个整数点的坐标,用三个大小相同边平行于坐标轴的正方形覆盖(在边界上的也算),问正方形的边长最 ...

  2. [BZOJ 1052][HAOI2007]覆盖问题(二分答案)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1052 分析: 挺有想法的一道题,先二分答案ans,主要是判断的问题. 首先可以弄出把所 ...

  3. BZOJ 1052 HAOI2007 覆盖问题 二分法答案+DFS

    标题效果:特定n点.涵盖所有的点与同方三面.斧头要求方垂直边界,最小平方的需求方长值 最大值至少.答案是很明显的二分法 但验证是一个问题 考虑仅仅有三个正方形,故用一个最小矩形覆盖这三个正方形时至少有 ...

  4. 【BZOJ 1052】 1052: [HAOI2007]覆盖问题 (乱搞)

    1052: [HAOI2007]覆盖问题 Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄 膜把这些小树遮盖起来,经过一番长久的 ...

  5. 【BZOJ】1052: [HAOI2007]覆盖问题

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1052 大概自己YY了个贪心然后过了... 二分答案,考虑如何check: 找到一个最小的矩 ...

  6. 【BZOJ】1052: [HAOI2007]覆盖问题(贪心)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1052 首先膜拜题解orz,表示只能想到二分... 贪心就是每一次找到一个最小的能包围所有点的矩阵,然 ...

  7. 1052: [HAOI2007]覆盖问题 - BZOJ

    Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小 ...

  8. [BZOJ1052][HAOI2007]覆盖问题 二分+贪心

    1052: [HAOI2007]覆盖问题 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2053  Solved: 959 [Submit][Sta ...

  9. 二分判定 覆盖问题 BZOJ 1052

    //二分判定 覆盖问题 BZOJ 1052 // 首先确定一个最小矩阵包围所有点,则最优正方形的一个角一定与矩形一个角重合. // 然后枚举每个角,再解决子问题 #include <bits/s ...

随机推荐

  1. 8、Java并发编程:同步容器

    Java并发编程:同步容器 为了方便编写出线程安全的程序,Java里面提供了一些线程安全类和并发工具,比如:同步容器.并发容器.阻塞队列.Synchronizer(比如CountDownLatch). ...

  2. 说说Ruby中的Symbol类

    相信大多人在学习Ruby过程中,都被Symbol类型迷惑过.因为其他语言基本没有这个类.而且它太灵活了.很多人只知其一不知其二. 本人查了不少资料,自己总结一下. 首先来看一下Ruby之父所著的< ...

  3. Object里面的方法

    object里面有12个方法,没写完,写一些部分代表 toString():输出对象的地址字符串(hashcode码) equals():用的是==,比较的是引用,在有些类里面是重写了这个方法的,重写 ...

  4. 「日常训练」COMMON 约数研究(HYSBZ-1968)

    题意与分析 感谢https://www.cnblogs.com/Leohh/p/7512960.html的题解.这题话说原来不在我的训练范围,正好有个同学问我,我就拿来做做.数学果然不是我擅长的啊,这 ...

  5. 苏醒的巨人----CSRF

    一.CSRF 跨站请求伪造(Cross-Site Request Forgery,CSRF)是指利用 受害者尚未失效的身份认证信息(cookie.会话等),诱骗其点 击恶意链接或者访问包含攻击代码的页 ...

  6. jenkins配置git+maven+Publish over SSH

    一.配置git 1.新建项目,源码管理选择git 2.Repository URL输入git目录 3.Credentials中选择新增凭据,凭据类型选择SSH,usename输入git,passphr ...

  7. Unity与服务区交互数据

    Unity与服务区交互数据 Unity可能在用的时候使用到登陆等需要与服务器交互数据.今天尝试使用了WWW类和WWWForm类来实现Get请求与Post请求. 1.WWW Unity圣典解释: WWW ...

  8. CSP201412-2:Z字形扫描

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  9. jmeter使用复习

    多终端进程: 配置客户端远程的ip地址和port 在客户端jmeter安装目录的bin目录下,修改配置文件 jmeter.properties 默认的remote_hosts 的值:(将肉鸡的地址加入 ...

  10. browsersync 插件

    自从发现了这个 browsersync 插件 ... 在也不用每次改一行代码就去手动刷新 HTML 页面了省去了很多繁琐的操作,当有多个显示器的时候,更加的方便,在IDEA上编辑代码之后,点击 com ...