假设我们知道以每个点开始到最后的最长上升序列,设为w[i],这样首先我们在w值中取max,如果询问的值比max大,这样显然就是无解,如果小的话,我们需要求出来字典序最小的方案。

  那么对于所有i,我们肯定以w[i]大于询问的值中的最小的i开始,那么假设上升序列中第一个值为i,第二个值为j,那么w[j]满足大于询问的值-1,且初始序列a中,a[j]的值要大于a[i],且为最小的j,对于最小的我们只需要通过循环正常的枚举就行了。

  那么我们现在剩下的问题就是w[i]值如何求,如果n小一些的话我们就可以n^2正常的做了,但是n为10^4,这样我们就需要维护单调队列que[i],表示长度为i的最长上升序列中,结尾最小的值,这样就可以了。但是我们要求每个w的话需要反向枚举,然后维护下降序列就可以了。

  

/**************************************************************
Problem: 1046
User: BLADEVIL
Language: C++
Result: Accepted
Time:2088 ms
Memory:924 kb
****************************************************************/ //By BLADEVIL
#include <cstdio>
#define maxn 10010
#define inf 20000 using namespace std; int n,tot;
int a[maxn],w[maxn],que[maxn]; int combin(int x)
{
int l,r,mid,ans=;
l=; r=tot;
while (l<=r)
{
mid=(l+r)>>;
if (que[mid]>x)
{
ans=mid;
l=mid+;
} else r=mid-;
}
return ans;
} int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
tot=;
for (int i=n;i;i--)
{
w[i]=combin(a[i]);
//printf("%d %d|",w[i],tot);
if (w[i]++==tot) tot++;
que[w[i]]=(a[i]>que[w[i]])?a[i]:que[w[i]];
//for (int j=1;j<=tot;j++) printf("%d ",que[j]); printf("\n");
}
int maxlen=;
for (int i=;i<=n;i++) maxlen=(w[i]>maxlen)?w[i]:maxlen;
//for (int i=1;i<=n;i++) printf("%d ",w[i]); printf("\n");
int m;
scanf("%d",&m);
while (m--)
{
int len;
scanf("%d",&len);
if (len>maxlen)
{
printf("Impossible\n");
continue;
}
int last=-inf;
for (int i=;i<=n;i++)
if (w[i]>=len&&a[i]>last)
{
printf("%d",a[i]);
if (len==)
{
printf("\n");
break;
} else
printf(" "),last=a[i],len--;
}
}
return ;
}

bzoj 1046 LIS的更多相关文章

  1. BZOJ 1046 最长不降子序列(nlogn)

    nlogn的做法就是记录了在这之前每个长度的序列的最后一项的位置,这个位置是该长度下最后一个数最小的位置.显然能够达到最优. BZOJ 1046中里要按照字典序输出序列,按照坐标的字典序,那么我萌可以 ...

  2. [BZOJ 1046] [HAOI2007] 上升序列 【DP】

    题目链接:BZOJ - 1046 题目分析 先倒着做最长下降子序列,求出 f[i],即以 i 为起点向后的最长上升子序列长度. 注意题目要求的是 xi 的字典序最小,不是数值! 如果输入的 l 大于最 ...

  3. BZOJ 1046: [HAOI2007]上升序列 LIS -dp

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3438  Solved: 1171[Submit][Stat ...

  4. BZOJ 1046: [HAOI2007]上升序列(LIS)

    题目挺坑的..但是不难.先反向做一次最长下降子序列.然后得到了d(i),以i为起点的最长上升子序列,接下来贪心,得到字典序最小. ----------------------------------- ...

  5. BZOJ 1046 上升序列(LIS变形)

    要保证长度为L的序列下标字典序最小,当然要尽量选前面的数. 如何判断前面的数是否满足条件?,只需要知道这个数开头的递增序列的最长长度是多少,如果不小于L,那么必然可以加入这个数.还需判断一下它是否大于 ...

  6. BZOJ 1046 [HAOI2007]上升序列(LIS + 贪心)

    题意: m次询问,问下标最小字典序的长度为x的LIS是什么 n<=10000, m<=1000 思路: 先nlogn求出f[i]为以a[i]开头的LIS长度 然后贪心即可,复杂度nm 我们 ...

  7. 【BZOJ 1046】 1046: [HAOI2007]上升序列

    1046: [HAOI2007]上升序列 Description 对于一个给定的S={a1,a2,a3,-,an},若有P={ax1,ax2,ax3,-,axm},满足(x1 < x2 < ...

  8. Bzoj 1046: [HAOI2007]上升序列 二分,递推

    1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3671  Solved: 1255[Submit][Stat ...

  9. bzoj 1046 : [HAOI2007]上升序列 dp

    题目链接 1046: [HAOI2007]上升序列 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3620  Solved: 1236[Submit] ...

随机推荐

  1. SQLite - Python

    SQLite - Python 安装 SQLite3 可使用 sqlite3 模块与 Python 进行集成.sqlite3 模块是由 Gerhard Haring 编写的.它提供了一个与 PEP 2 ...

  2. python Django框架接入微信公众平台

    1.在接入微信公众平台之前,需要在微信公众平台配置好基本信息,如下: 这个时候点击“提交”按钮,会提示“Token校验失败”,不要着急,这是必然会出现的现象,先不要退出页面,保留各项输入的数据,按第二 ...

  3. MEX程序中的mexFunction函数【转】

    与C中的main函数一样,MEX程序中的开始函数为mexFunction.默认变量参数是: void mexFunction(int nlhs, mxArray *plhs[], int nrhs, ...

  4. arc076 F - Exhausted? (霍尔定理学习)

    题目链接 Problem Statement There are M chairs arranged in a line. The coordinate of the i-th chair ($$$1 ...

  5. 【bzoj2653】middle 可持久化线段树区间合并

    题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[ ...

  6. 【bzoj3297】[USACO2011 Open]forgot STL+dp

    题目描述 发生了这么多,贝茜已经忘记了她cowtube密码.然而,她记得一些有用的信息. 首先,她记得她的密码(记为变量P)长度为L(1 <= L<=1,000)字符串,并可以被分成 一个 ...

  7. BZOJ4850/BZOJ2216 JSOI2016灯塔/Poi2011Lightning Conductor(决策单调性)

    即对每个i最大化hj-hi+sqrt(|i-j|).先把绝对值去掉,正反各做一次即可.注意到当x>y时,sqrt(x+1)-sqrt(x)<sqrt(y+1)-sqrt(y),所以若对于i ...

  8. hdu 1392 Surround the Trees (凸包)

    Surround the Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. POJ2079:Triangle——题解

    http://poj.org/problem?id=2079 题目大意:求最大面积的三角形. —————————————————— 可以知道,最大面积的三角形的顶点一定是最大凸包的顶点. 接下来就是O ...

  10. webpack散记

    1. manifest manifest存储了webpack的chunk相关的信息.具体为一个对象,或者包含runtime的一段代码.其中包含着一个chunkId,已经对应chunkId的相关信息,例 ...