书籍:《算法导论》第13章

红黑树性质:
1. 每个节点要么red要么black。
2. 根节点是black节点。
3. 叶子节点是black节点。
4. red节点的左右儿子节点都是black节点。
5. 从同一节点出发,到达可达的叶子节点路径上,黑色节点个数都一样。

节点数据结构:

class RBNode {

    RBNode left , right ,parent;

    int color;

}

红黑树是相对平衡的树证明:
红黑树可以保证:

h <= 2*lg(n+1) ,n表示红黑树的内部节点数,除了叶子节点和根节点都是内部节点。h表示树的高度。
证明:
定义:bh(x):black height,黑高度,指从节点x到叶子节点的路径上黑节点个数。
1. 使用归纳证明,以x为根的红黑树,内部节点个数n至少为2^bh(x) -1 个。

下面通过"数学归纳法"开始论证高度为h的红黑树,它的包含的内节点个数至少为 2^bh(x)-1个"。

(01) 当树的高度h=0时,
内节点个数是0,bh(x) 为0,2^bh(x)-1 也为 0。显然,原命题成立。

(02) 当h>0,且树的高度为 h-1 时,它包含的节点个数至少为 2^{bh(x)-1}-1。这个是根据(01)推断出来的!

下面,由树的高度为 h-1 的已知条件推出“树的高度为 h 时,它所包含的节点树为 2^bh(x)-1”。

当树的高度为 h 时,
对于节点x(x为根节点),其黑高度为bh(x)。
对于节点x的左右子树,它们黑高度为 bh(x) 或者 bh(x)-1。
根据(02)的已知条件,我们已知 "x的左右子树,即高度为 h-1 的节点,它包含的节点至少为 2^{bh(x)-1}-1 个";

所以,节点x所包含的节点至少为 ( 2^{bh(x)-1}-1 ) + ( 2^{bh(x)-1}-1 ) + 1 = 2^{bh(x)-1}。即节点x所包含的节点至少为 2^{bh(x)-1} 。
因此,原命题成立。

由(01)、(02)得出,"高度为h的红黑树,它的包含的内节点个数至少为 2^bh(x)-1个"。
因此,“一棵含有n个节点的红黑树的高度至多为2log(n+1)”。

2. 假设红黑树的高度为h,由性质4可知红黑树的黑高度bh(root)>=h/2,因此,可得
n >= 2^(h/2)-1
化简得:
h <= 2*lg(n+1) 得证。

红黑树red-black tree的更多相关文章

  1. 笔试算法题(51):简介 - 红黑树(RedBlack Tree)

    红黑树(Red-Black Tree) 红黑树是一种BST,但是每个节点上增加一个存储位表示该节点的颜色(R或者B):通过对任何一条从root到leaf的路径上节点着色方式的显示,红黑树确保所有路径的 ...

  2. C# 链表 二叉树 平衡二叉树 红黑树 B-Tree B+Tree 索引实现

    链表=>二叉树=>平衡二叉树=>红黑树=>B-Tree=>B+Tree 1.链表 链表结构是由许多节点构成的,每个节点都包含两部分: 数据部分:保存该节点的实际数据. 地 ...

  3. 2-3 树/红黑树(red-black tree)

    2-3 tree 2-3树节点: null节点,null节点到根节点的距离都是相同的,所以2-3数是平衡树 2叉节点,有两个分树,节点中有一个元素,左树元素更小,右树元素节点更大 3叉节点,有三个子树 ...

  4. 红黑树(R-B Tree)

    R-B Tree简介 R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树.红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black). ...

  5. 树-红黑树(R-B Tree)

    红黑树概念 特殊的二叉查找树,每个节点上都有存储位表示节点的颜色是红(Red)或黑(Black).时间复杂度是O(lgn),效率高. 特性: (1)每个节点或者是黑色,或者是红色. (2)根节点是黑色 ...

  6. 红黑树(RB Tree)

    看到一篇很好的文章 文章来源:http://www.360doc.com/content/15/0730/00/14359545_488262776.shtml 红黑树是一种高效的索引树,多于用关联数 ...

  7. 红黑树(Red-Black tree)

    红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性.同时红黑树更是一颗自平衡的排序二叉树.我们知道一颗基本的二叉树他们都需要满足一个基本性质–即树中的任何节点的值大于它的左子节点,且小 ...

  8. java数据结构——红黑树(R-B Tree)

    红黑树相比平衡二叉树(AVL)是一种弱平衡树,且具有以下特性: 1.每个节点非红即黑; 2.根节点是黑的; 3.每个叶节点(叶节点即树尾端NULL指针或NULL节点)都是黑的; 4.如图所示,如果一个 ...

  9. 红黑树(red-black tree)实现记录

    https://github.com/xieqing/red-black-tree A Red-black Tree Implementation In C There are several cho ...

  10. 红黑树(二)之 C语言的实现

    概要 红黑树在日常的使用中比较常用,例如Java的TreeMap和TreeSet,C++的STL,以及Linux内核中都有用到.之前写过一篇文章专门介绍红黑树的理论知识,本文将给出红黑数的C语言的实现 ...

随机推荐

  1. Android开发 之 我的jar包引用方法

    1.在工程上名上右键->Build Path ->Configure Build Path 2.在Libraries选项卡中,选择右侧的Add External JARs,然后选择要导入的 ...

  2. JQUERY插件学习之jQuery UI

    jQuery UI:http://jqueryui.com/ jQuery UI介绍: jQuery UI 是以 jQuery 为基础的开源 JavaScript 网页用户界面代码库.包含底层用户交互 ...

  3. 【Firefly API文档】—— Package Distributed

    http://bbs.gameres.com/forum.php?mod=viewthread&tid=219654 package distributed 这个包中主要封装了各个服务进程间进 ...

  4. phpMyAdmim和Yii 连接Mysql报错。

    故障: 之前phpMyAdmim和Yii连接Mysql都好着的.某天,同一时候出现例如以下报错: 1.linux下phpMyAdmin 出现 "缺少 mysqli 扩展,请检查 PHP 配置 ...

  5. Qt-优化布局结构

    在迄今为止讲到每一个例子中,我们只是简单的把窗口部件放置到某个确定的布局中.但在某些情况下,由此形成的布局看起来可能还不是我们最想要的形式.在这些情形中,可以通过改变要摆放的窗口部件的大小策略和大小提 ...

  6. <转>得到其它进程的命令行

    #include <windows.h> #include <stdio.h> #define ProcessBasicInformation 0 typedef struct ...

  7. 【HTML5 WebSocket】WebSocket对象特性和方法

    <HTML5 WebSocket权威指南>学习笔记&3 WebSocket方法的对象特性 1. WebSocket方法 a. send方法 send方法用于在WebSocket连接 ...

  8. IOS 颜色 16进制 转换

    #define RGB(r,g,b) ([UIColor colorWithRed:r/255.0 green:g/255.0 blue:b/255.0 alpha:1]) #define HEXTO ...

  9. 批量Linux、Windows管理工具BatchShell 1.2(最新版)

    简介: BatchShell是什么: BatchShell是一款基于SSH2的批量文件传输及命令执行工具,它可以同时传输文件到多台远程服务器以及同时对多台远程服务器执行命令.具备以下主要功能:     ...

  10. 从12306网站新验证码看Web验证码设计与破解

    2015年3月16日,铁路官方购票网站12306又出新招,在登录界面推出了全新的验证方式,用户在填写好登录名和密码之后,还要准确的选取图片验证码才能登陆成功.据悉,12306验证码改版后,目前所有抢票 ...