【BZOJ 1815】【SHOI 2006】color 有色图
http://www.lydsy.com/JudgeOnline/problem.php?id=1815
这道题好难啊,组合数学什么根本不会啊qwq
题解详见08年的Pólya计数论文。
主要思想是只枚举具有代表性的点的置换,算出这些点的置换造成的边的置换的保持不变的着色数(边的置换的保持不变的着色数我想了一天啊_(:з」∠)_),最后再乘上与这种具有代表性的点的置换同类的点的置换总数就可以了。
WA了好几次,中间一个地方忘取模了qwq
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 60;
int n, m, p;
int GCD(int a, int b) {return b ? GCD(b, a % b) : a;}
int ipow(int a, int b) {
int ret = 1, w = a;
while (b) {
if (b & 1) ret = 1ll * ret * w % p;
w = 1ll * w * w % p;
b >>= 1;
}
return ret;
}
int gcd[N][N], powm[N * N], jc[N], njc[N], ni[N];
int L[N], ans = 0;
void solve(int tot) {
int res = jc[n], cnt = 1, ret = 0;
for (int i = 1; i <= tot; ++i)
res = 1ll * res * ni[L[i]] % p;
for (int i = tot - 1; i >= 0; --i) {
if (L[i] != L[i + 1]) {
res = 1ll * res * njc[cnt] % p;
cnt = 1;
continue;
}
++cnt;
}
for (int i = 1; i <= tot; ++i)
ret += (L[i] >> 1);
for (int i = 1; i <= tot; ++i)
for (int j = 1; j < i; ++j)
ret += gcd[L[i]][L[j]];
(ans += 1ll * res * powm[ret] % p) %= p;
}
void dfs(int tmp, int last, int rest) {
if (rest == 0) {
solve(tmp - 1);
return;
}
for (int i = last; i <= rest; ++i) {
L[tmp] = i;
dfs(tmp + 1, i, rest - i);
}
}
int main() {
scanf("%d%d%d", &n, &m, &p);
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= i; ++j)
gcd[i][j] = GCD(i, j);
powm[0] = 1;
for (int i = 1, top = n * n; i <= top; ++i)
powm[i] = 1ll * powm[i - 1] * m % p;
jc[0] = njc[0] = ni[0] = 1;
for (int i = 1; i <= n; ++i) {
jc[i] = 1ll * jc[i - 1] * i % p;
ni[i] = ipow(i, p - 2);
njc[i] = 1ll * njc[i - 1] * ni[i] % p;
}
dfs(1, 1, n);
printf("%d\n", 1ll * ans * njc[n] % p);
return 0;
}
【BZOJ 1815】【SHOI 2006】color 有色图的更多相关文章
- bzoj 1815: [Shoi2006]color 有色图 置换群
1815: [Shoi2006]color 有色图 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 136 Solved: 50[Submit][Stat ...
- BZOJ1815: [Shoi2006]color 有色图
BZOJ1815: [Shoi2006]color 有色图 Description Input 输入三个整数N,M,P 1< = N <= 53 1< = M < = 1000 ...
- BZOJ 1815: [Shoi2006]color 有色图(Polya定理)
题意 如果一张无向完全图(完全图就是任意两个不同的顶点之间有且仅有一条边相连)的每条边都被染成了一种颜色,我们就称这种图为有色图. 如果两张有色图有相同数量的顶点,而且经过某种顶点编号的重排,能够使得 ...
- BZOJ 1815: [Shoi2006]color 有色图 [Polya DFS 重复合并]
传送门 题意: 染色图是无向完全图,且每条边可被染成k种颜色中的一种.两个染色图是同构的,当且仅当可以改变一个图的顶点的编号,使得两个染色图完全相同.问N个顶点,k种颜色,本质不同的染色图个数(模质数 ...
- bzoj 1478: Sgu282 Isomorphism && 1815: [Shoi2006]color 有色图【dfs+polya定理】
参考 https://wenku.baidu.com/view/fee9e9b9bceb19e8b8f6ba7a.html?from=search### 的最后一道例题 首先无向完全图是个若干点的置换 ...
- 洛谷 P4128: bzoj 1815: [SHOI2006]有色图
题目传送门:洛谷 P4128. 计数好题,原来是 13 年前就出现了经典套路啊.这题在当年应该很难吧. 题意简述: \(n\) 个点的完全图,点没有颜色,边有 \(m\) 种颜色,问本质不同的图的数量 ...
- 解题:SHOI 2006 有色图
题面 本质上是在对边求置换,然后每个循环里涂一样的颜色,但是还是要点上入手,考虑每条边的两个端点是否在一个循环里 如果在一个循环里,那么当循环长度$len$为奇数时只有转一整圈才行,而边的总数是$\f ...
- BZOJ 1051 HAOI 2006 受欢迎的牛
[题解] 先用tarjan缩点,然后如果某个强联通分量的出度为0,则该强联通分量内的点数为答案,否则无解.因为若其他所有的强联通分量都有边连向Ai,则Ai必定没有出边,否则Ai连向的点所属的强联通分量 ...
- [bzoj 3566][SHOI 2014]概率充电器
传送门 Description SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件.进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定. 随后电能可以 ...
随机推荐
- bzoj3043 IncDec Sequence
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3043 [题解] 比较神奇的一道题,开始没往差分的角度上想,所以没想出来. 考虑查分数组,有$ ...
- 【NOIP】提高组2013 转圈游戏
[算法]快速幂运算 [题解]ans=(m*10^k+x)%n,用快速幂计算10^k即可,复杂度为O(log k). #include<cstdio> long long n,m,k,x,a ...
- 【BZOJ】1299: [LLH邀请赛]巧克力棒
[算法]博弈论 [题解]这道题不是典型的SG函数题了. 不把它当成游戏看待,那么这道题是在说n个石子堆,每次可以加入若干个或进行Nim游戏. 我们当前先手,则考虑构造必败态来获胜. 当前已加入的NIm ...
- HDU - 5327 Olympiad(一维前缀和)
Olympiad Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem ...
- Python 源码学习之内存管理 -- (转)
Python 的内存管理架构(Objects/obmalloc.c): _____ ______ ______ ________ [ int ] [ dict ] [ list ] ... [ str ...
- vim 以16进制进行文件编辑
用 vim中二进制文件的编辑是先通过外部程序xxd来把文件dump成其二进制的文本形式,然后就可以按通常的编辑方式对文件进行编辑,编辑完成后再用xxd 转化为原来的形式即可. 可分如下几步进行: (1 ...
- 2017-2018-1 20179205《Linux内核原理与设计》第五周作业
<Linux内核原理与设计>第五周作业 视频学习及操作分析 一.用户态.内核态和中断 内核态在CPU执行中对应高执行级别,执行级别为0级,具有特权指令,可以访问任意物理地址:用户态执行级别 ...
- 直接在注册DB服务的时候,做beforeQuery事件监听
- vs 2015 插件 supercharger 破解方式
亲测有效:效果如图 方法如下: 1.打开Supercharger的options; 2.点击Pricing & Registration 3.复制 license 然后再按Paste &am ...
- 设计模式之笔记--工厂方法模式(Factory Method)
工厂方法模式(Factory Method) 定义 工厂方法模式(Factory Method),定义一个用于创建对象的接口,让子类决定实例化哪一个类.工厂方法使一个类的实例化延迟到其子类. 类图 描 ...