Snacks

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2165    Accepted Submission(s): 513

Problem Description
百度科技园内有n个零食机,零食机之间通过n−1条路相互连通。每个零食机都有一个值v,表示为小度熊提供零食的价值。

由于零食被频繁的消耗和补充,零食机的价值v会时常发生变化。小度熊只能从编号为0的零食机出发,并且每个零食机至多经过一次。另外,小度熊会对某个零食机的零食有所偏爱,要求路线上必须有那个零食机。

为小度熊规划一个路线,使得路线上的价值总和最大。

 
Input
输入数据第一行是一个整数T(T≤10),表示有T组测试数据。

对于每组数据,包含两个整数n,m(1≤n,m≤100000),表示有n个零食机,m次操作。

接下来n−1行,每行两个整数x和y(0≤x,y<n),表示编号为x的零食机与编号为y的零食机相连。

接下来一行由n个数组成,表示从编号为0到编号为n−1的零食机的初始价值v(|v|<100000)。

接下来m行,有两种操作:0 x y,表示编号为x的零食机的价值变为y;1 x,表示询问从编号为0的零食机出发,必须经过编号为x零食机的路线中,价值总和的最大值。

本题可能栈溢出,辛苦同学们提交语言选择c++,并在代码的第一行加上:

`#pragma comment(linker, "/STACK:1024000000,1024000000") `

 
Output
对于每组数据,首先输出一行”Case #?:”,在问号处应填入当前数据的组数,组数从1开始计算。

对于每次询问,输出从编号为0的零食机出发,必须经过编号为x零食机的路线中,价值总和的最大值。

 
Sample Input
1
6 5
0 1
1 2
0 3
3 4
5 3
7 -5 100 20 -5 -7
1 1
1 3
0 2 -1
1 1
1 5
 
Sample Output
Case #1:
102
27
2
20
 

 
 
这题是把树化为线性去处理的典型题。
对于本题我们要求的是经过从根并经过点s的路径最大权值,即到达该点和该点子树上每个节点的路径总权值里的最大值。这个可以用前缀和求出到每个点的总权值。并且这之中带有权值修改,一下就令人想到线段树。但线段树维护的是一个区间上的值,那怎么把一颗树化为线性呢?那么此时dfs时间戳就派上用场了。我们需要把一棵树用dfs时间戳将这棵树化为一个线性的区间,区间每个点存的是dfs时间戳里的节点所对应的从0根节点到该节点的路径总权值。此时我们要求解点s的从根并经过点s的路径最大权值,就变成了求解pre[s]~last[s]这个区间里所有权值的最大值,而修改某个点u的权值相当于更新pre[u]~last[u]里的所有权值。于是该题就能用线段树维护求解了。
 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<iostream>
#include<cstring>
#define clr(x) memset(x,0,sizeof(x))
#define clr_1(x) memset(x,-1,sizeof(x))
#define LL long long
#define INF (1e18)
using namespace std;
struct edg
{
int next,to;
}edge[<<];
struct seg
{
int l,r;
LL maxn,tag;
}segt[<<];
int head[],dfstm[],pre[],last[],n,m,k,u,v,s,T,cnt;
LL value[],sum[],x;
LL max(LL a, LL b)
{
return a>b?a:b;
}
void addedge(int u,int v)
{
edge[++cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt;
return ;
}
void dfs(int i,int fa)
{
sum[i]=sum[fa]+value[i];
dfstm[++k]=i;
pre[i]=k;
for(int j=head[i];j!=-;j=edge[j].next)
if(edge[j].to!=fa)
dfs(edge[j].to,i);
last[i]=k;
return ;
}
void init(int i,int l,int r)
{
segt[i]=(seg){l,r,,};
if(l==r)
{
segt[i].maxn=sum[dfstm[l]];
return;
}
int mid=(l+r)>>;
init(i<<,l,mid);
init(i<<|,mid+,r);
segt[i].maxn=max(segt[i<<].maxn,segt[i<<|].maxn);
return ;
}
void pushdown(int i)
{
if(segt[i].tag!=)
{
if(segt[i].l!=segt[i].r)
{
segt[i<<].maxn+=segt[i].tag;
segt[i<<|].maxn+=segt[i].tag;
segt[i<<].tag+=segt[i].tag;
segt[i<<|].tag+=segt[i].tag;
}
segt[i].tag=;
}
return ;
}
void update(int i,int l,int r,LL addval)
{
if(segt[i].l>=l && segt[i].r<=r)
{
segt[i].tag+=addval;
segt[i].maxn+=addval;
return ;
}
pushdown(i);
int mid=(segt[i].l+segt[i].r)>>;
if(mid>=r)
{
update(i<<,l,r,addval);
}
else if(mid<l)
{
update(i<<|,l,r,addval);
}
else
{
update(i<<,l,r,addval);
update(i<<|,l,r,addval);
}
segt[i].maxn=max(segt[i<<].maxn,segt[i<<|].maxn);
return ;
}
LL query(int i,int l,int r)
{
if(segt[i].l>=l && segt[i].r<=r)
{
return segt[i].maxn;
}
pushdown(i);
int mid=(segt[i].l+segt[i].r)>>;
LL ans=-INF;
if(mid>=r)
{
ans=max(ans,query(i<<,l,r));
}
else if(mid<l)
{
ans=max(ans,query(i<<|,l,r));
}
else
{
ans=max(ans,query(i<<,l,r));
ans=max(ans,query(i<<|,l,r));
}
segt[i].maxn=max(segt[i<<].maxn,segt[i<<|].maxn);
return ans;
}
int main()
{
scanf("%d",&T);
for(int kase=;kase<=T;kase++)
{
clr_1(head);
clr(sum);
cnt=;
k=;
printf("Case #%d:\n",kase);
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
for(int i=;i<n;i++)
{
scanf("%lld",&value[i]);
}
dfs(,);
init(,,n);
for(int i=;i<=m;i++)
{
scanf("%d",&k);
if(k)
{
scanf("%d",&u);
printf("%lld\n",query(,pre[u],last[u]));
}
else
{
scanf("%d%lld",&u,&x);
update(,pre[u],last[u],x-value[u]);
value[u]=x;
}
}
}
return ;
}

hdu 5692 Snacks(dfs时间戳+线段树)的更多相关文章

  1. HDU.5692 Snacks ( DFS序 线段树维护最大值 )

    HDU.5692 Snacks ( DFS序 线段树维护最大值 ) 题意分析 给出一颗树,节点标号为0-n,每个节点有一定权值,并且规定0号为根节点.有两种操作:操作一为询问,给出一个节点x,求从0号 ...

  2. HDU 5692 Snacks(DFS序+线段树)

    Snacks Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  3. hdu 3974 dfs时间戳+线段树

    题意: 一个公司里面每个员工都有一个顶头上司,一旦给某个员工分配任务后,这个员工以及该员工的所有下属都在做该任务. 有若干操作,分配给员工任务以及查询该员工正在执行的任务. 题解: 典型的更新字树的操 ...

  4. hdu-5692 Snacks(dfs序+线段树)

    题目链接: Snacks Problem Description   百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的价值. 由于零食被频繁的 ...

  5. HDU5692 Snacks DFS序 线段树

    去博客园看该题解 题目 HDU5692 Snacks Problem Description 百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的 ...

  6. HDU3974 Assign the task —— dfs时间戳 + 线段树

    题目链接:https://vjudge.net/problem/HDU-3974 There is a company that has N employees(numbered from 1 to ...

  7. HDU - 4366 Successor DFS区间+线段树

    Successor:http://acm.hdu.edu.cn/showproblem.php?pid=4366 参考:https://blog.csdn.net/colin_27/article/d ...

  8. Assign the task HDU - 3974(dfs序+线段树)

    There is a company that has N employees(numbered from 1 to N),every employee in the company has a im ...

  9. HDU 4366 Successor( DFS序+ 线段树 )

    Successor Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total S ...

随机推荐

  1. 【BZOJ】3895: 取石子

    [算法]博弈论+记忆化搜索 [题意]给定n堆石子,两人轮流操作,每个人可以合并两堆石子或拿走一个石子,不能操作者输,问是否先手必胜 [题解] 首先,若所有石子堆的石子数>1,显然总操作数为(石子 ...

  2. 【BZOJ】1666 [Usaco2006 Oct]Another Cow Number Game 奶牛的数字游戏

    [算法]贪心&&堆 [题解]反过来看就是合并任意两块木板,花费为木板长度之和. 显然从最小的两块开始合并即可,用堆(优先队列)维护. 经典DP问题石子归并是只能合并相邻两堆石子,所以不 ...

  3. A题 hdu 1235 统计同成绩学生人数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1235 统计同成绩学生人数 Time Limit: 2000/1000 MS (Java/Others) ...

  4. Java 中的静态内部类

    静态内部类是 static 修饰的内部类,这种内部类的特点是: 1. 静态内部类不能直接访问外部类的非静态成员,但可以通过 new 外部类().成员 的方式访问 2. 如果外部类的静态成员与内部类的成 ...

  5. Python3 shelve模块(持久化)

    shelve模块 也可以序列化Python所有数据类型,而且可以多次序列化;shelve模块通过key-value方式持久化 1.序列化 ? 1 2 3 4 5 6 7 8 9 10 11 12 13 ...

  6. Linux线程基础函数

    1. 线程标识: (1) 比较两个线程ID: #include <pthread.h> int pthread_equal(pthread_t tid1, pthread_t tid2); ...

  7. Linux 入门记录:二十、Linux 包管理工具 YUM

    一.YUM(Yellowdog Updater, Modified) 1. YUM 简介 RPM 软件包形式管理软件虽然方便,但是需要手动解决软件包的依赖问题.很多时候安装一个软件首先需要安装 1 个 ...

  8. Win10下Anaconda3安装CPU版本TensorFlow并使用Pycharm开发

    环境:windows10 软件:Anaconda3 1.安装Anaconda 选择相应的Anaconda进行安装,下载地址点击这里,下载对应系统版本的Anaconda3. 运行 开始菜单->An ...

  9. 单文件组件(single-file components)

    介绍 我们可以使用预处理器来构建简洁和功能更丰富的组件,比如 Pug,Babel (with ES2015 modules),和 Stylus.

  10. python安装基础

    . python安装 //先查看是否存在python的包,如果没有,那可以用yum或去python的官网安装 [root@localhost ~]# rpm -qa|grep python pytho ...