ACM Contest and Blackout

题目链接:https://vjudge.net/problem/UVA-10600

Description:

In order to prepare the “The First National ACM School Contest” (in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well. You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major — find the cost of the two cheapest connection plans.

Input:

The Input starts with the number of test cases, T (1 < T < 15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3 < N < 100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai , Bi , Ci , where Ci is the cost of the connection (1 < Ci < 300) between schools Ai and Bi . The schools are numbered with integers in the range 1 to N.

Output:

For every test case print only one line of output. This line should contain two numbers separated by a single space – the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1 = S2 if and only if there are two cheapest plans, otherwise S1 < S2. You can assume that it is always possible to find the costs S1 and S2.

Sample Input:

2

5 8

1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66

9 14

1 2 4 1 8 8 2 8 11 3 2 8 8 9 7 8 7 1 7 9 6 9 3 2 3 4 7 3 6 4 7 6 2 4 6 14 4 5 9 5 6 10

Sample Output:

110 121

37 37

题意:

求次小生成树。

题解:

先跑一遍最小生成树,然后O(n^2)预处理出任意两点之间的最小瓶颈路,最后通过枚举算出次小生成树。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = ;
int t,n,m;
struct Edge{
int u,v,w;
bool operator < (const Edge &A)const{
return w<A.w;
}
}e[N*N];
int f[N],mp[N][N];
int find(int x){
return f[x]==x?f[x]:f[x]=find(f[x]);
}
int Kruskal(){
int ans=;
for(int i=;i<=n+;i++) f[i]=i;
for(int i=;i<=m;i++){
int u=e[i].u,v=e[i].v;
int fx=find(u),fy=find(v);
if(fx==fy) continue ;
f[fx]=fy;
mp[u][v]=mp[v][u]=;
ans+=e[i].w;
}
return ans ;
}
int d[N][N],dis[N][N];
int check[N];
void dfs(int u,int fa){
for(int i=;i<=n;i++){
if(check[i]) d[i][u]=d[u][i]=max(d[i][fa],dis[u][fa]);
}
check[u]=;
for(int i=;i<=n;i++){
if(mp[i][u] && i!=fa) dfs(i,u);
}
}
int main(){
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
memset(dis,,sizeof(dis));
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
e[i]=Edge{u,v,w};
dis[u][v]=dis[v][u]=w;
}
sort(e+,e+m+);
memset(d,,sizeof(d));
memset(check,,sizeof(check));
memset(mp,,sizeof(mp));
int sum=Kruskal();
cout<<sum<<" ";
dfs(,-);
int ans=INF;
for(int i=;i<=m;i++){
int u=e[i].u,v=e[i].v,w=e[i].w;
if(mp[u][v]) continue ;
ans=min(ans,sum-d[u][v]+w);
}
cout<<ans<<endl;
} return ;
}

UVA10600:ACM Contest and Blackout(次小生成树)的更多相关文章

  1. UVA10600 ACM Contest and Blackout —— 次小生成树

    题目链接:https://vjudge.net/problem/UVA-10600 In order to prepare the “The First National ACM School Con ...

  2. UVA 10600 ACM Contest and Blackout 次小生成树

    又是求次小生成树,就是求出最小生成树,然后枚举不在最小生成树上的每条边,求出包含着条边的最小生成树,然后取一个最小的 #include <iostream> #include <al ...

  3. UVA-10600 ACM Contest and Blackout (次小生成树)

    题目大意:给一张无向图,找出最小生成树和次小生成树. 题目分析:模板题...方法就是枚举所有的比最小生成树中两端点之间的最长边还要长的边,用它替换,再取一个最小的值便是次小生成树了. 代码如下: # ...

  4. UVA10600 ACM Contest and Blackout

    用prim算法求最小生成树和次小生成树~ #include<cstdio> #include<algorithm> #include<cstring> using ...

  5. 【UVA 10600】 ACM Contest and Blackout(最小生成树和次小生成树)

    [题意] n个点,m条边,求最小生成树的值和次小生成树的值. InputThe Input starts with the number of test cases, T (1 < T < ...

  6. [ An Ac a Day ^_^ ] [kuangbin带你飞]专题八 生成树 UVA 10600 ACM Contest and Blackout 最小生成树+次小生成树

    题意就是求最小生成树和次小生成树 #include<cstdio> #include<iostream> #include<algorithm> #include& ...

  7. 【uva 10600】ACM Contest and Blackout(图论--次小生成树 模版题)

    题意:有T组数据,N个点,M条边,每条边有一定的花费.问最小生成树和次小生成树的权值. 解法:具体请见 关于生成树的拓展 {附[转]最小瓶颈路与次小生成树}(图论--生成树) 1 #include&l ...

  8. uva 10600 ACM Contest And Blackout

    题意: 求最小生成树和次小生成树的总权值. 思路: 第一种做法,适用于规模较小的时候,prim算法进行的时候维护在树中两点之间路径中边的最大值,复杂度O(n^2),枚举边O(m),总复杂度O(n^2) ...

  9. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

随机推荐

  1. 【递归入门】组合的输出:dfs

    题目描述 排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r < = n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数. 现要求你不用递归的方 ...

  2. 《机器学习实战》笔记——决策树(ID3)

    现在要介绍的是ID3决策树算法,只适用于标称型数据,不适用于数值型数据. 决策树学习算法最大的优点是,他可以自学习,在学习过程中,不需要使用者了解过多的背景知识.领域知识,只需要对训练实例进行较好的标 ...

  3. DataSet转化为DataTable

    . DataTable dt = ds.Tables[]; . DataTable dt = dao.FillTables("GetOptions_DKI_City_HCPName" ...

  4. 理解glance

    摘要: 本节介绍 OpenStack Image 服务 Glance 的基本概念. OpenStack 由 Glance 提供 Image 服务. 理解 Image 要理解 Image Service ...

  5. default & delete

    一.使用“=default” 1. 显式生成拷贝控制成员的合成版本 class A { public: A() = default; A(const A &) = default; A& ...

  6. <Android>列表、网格、画廊视图及适配器的绑定

    列表视图和适配器的绑定 列表视图既可以使用ListView组件,也可以继承ListActivity.显示可以是ArrayAdapter,也可以是游标SimpleCursorAdapter,还可以是继承 ...

  7. iframe 随内容自适应高度

    兼容性好的 html代码: <iframe src="enterprise/enter_edit.aspx" id="mainframe" framebo ...

  8. android gradle打包常见问题及解决方案

    背景: 问题: Q1: UNEXPECTED TOP-LEVEL ERROR: java.lang.OutOfMemoryError: Java heap space at com.android.d ...

  9. Agile.Net 组件式开发平台 - 驱动开发示例

    首先讲一下概念,此驱动非彼驱动.在Agle.Net中我们将组件规划成两种类型,一种是基于业务的窗体组件,一种是提供扩展功能的驱动组件. 打个比方例如一般系统中需要提供身份证读卡功能,然而市面上有很多种 ...

  10. hibernate映射表

    <?xml version="1.0"?>   <!DOCTYPE hibernate-mapping PUBLIC        "-//Hibern ...