题目:

http://poj.org/problem?id=2728


题解:

二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define N 1005
using namespace std;
int n,tot;
double x[N],y[N],z[N],dis[N];
bool vis[N];
double mul(double x) {return x*x;}
double dist(int a,int b)
{
return sqrt(mul(x[a]-x[b])+mul(y[a]-y[b]));
}
bool check(double mid)
{
memset(vis,,sizeof(vis));
for (int i=;i<=n;i++) dis[i]=fabs(z[]-z[i])-mid*dist(,i);
vis[]=;
int tot=n-;
int id=-;
double val=0.0,tmp=0.0;
while(tot--)
{
id=-;
for (int i=;i<=n;i++)
{
if(!vis[i])
{
if(id==-) id=i;
else if(dis[id]>dis[i]) id=i;
}
}
tmp+=dis[id];
vis[id]=;
for (int i=;i<=n;i++)
{
if(!vis[i])
{
dis[i]=min(dis[i],fabs(z[i]-z[id])-mid*dist(i,id));
}
}
}
return tmp<=0.0;
}
int main()
{
while (scanf("%d",&n)!=EOF)
{
if (!n) break;
for (int i=;i<=n;i++) scanf("%lf%lf%lf",&x[i],&y[i],&z[i]);
double l=0.0,r=0.0,mid;
for (int i=;i<=n;i++)
r+=fabs(z[i]-z[]);
for(int i=;i<=;i++)
{
mid=(l+r)/2.0;
if (check(mid)) r=mid;
else l=mid; }
printf("%.3lf\n",r);
}
return ;
}

POJ 2728 Desert King | 01分数规划的更多相关文章

  1. POJ 2728 Desert King (01分数规划)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions:29775   Accepted: 8192 Descr ...

  2. POJ 2728 Desert King ★(01分数规划介绍 && 应用の最优比率生成树)

    [题意]每条路径有一个 cost 和 dist,求图中 sigma(cost) / sigma(dist) 最小的生成树. 标准的最优比率生成树,楼教主当年开场随手1YES然后把别人带错方向的题Orz ...

  3. POJ 2728 Desert King 01分数规划,最优比率生成树

    一个完全图,每两个点之间的cost是海拔差距的绝对值,长度是平面欧式距离, 让你找到一棵生成树,使得树边的的cost的和/距离的和,比例最小 然后就是最优比例生成树,也就是01规划裸题 看这一发:ht ...

  4. poj2728 Desert King——01分数规划

    题目:http://poj.org/problem?id=2728 第一道01分数规划题!(其实也蛮简单的) 这题也可以用迭代做(但是不会),这里用了二分: 由于比较裸,不作过多说明了. 代码如下: ...

  5. 【POJ2728】Desert King - 01分数规划

    Description David the Great has just become the king of a desert country. To win the respect of his ...

  6. poj2728 Desert King --- 01分数规划 二分水果。。

    这题数据量较大.普通的求MST是会超时的. d[i]=cost[i]-ans*dis[0][i] 据此二分. 但此题用Dinkelbach迭代更好 #include<cstdio> #in ...

  7. 【POJ2728】Desert King(分数规划)

    [POJ2728]Desert King(分数规划) 题面 vjudge 翻译: 有\(n\)个点,每个点有一个坐标和高度 两点之间的费用是高度之差的绝对值 两点之间的距离就是欧几里得距离 求一棵生成 ...

  8. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

  9. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

随机推荐

  1. 数据库路由中间件MyCat - 背景篇(2)

    此文已由作者张镐薪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. MyCat的前世今生 如前文所说,Amoeba.Cobar.MyCat等属于同宗一脉.若Amoeba能继续下 ...

  2. react-native android 初始化问题

    最近开始接触rn,官方起手,装了一堆工具,然后启动项目的时候出现了一堆问题,这里针对我遇到的一些问题提供一些解决方案. 本人开发环境mac,在启动ios的时候没啥大问题,可以直接启动,这里提示一点,因 ...

  3. Python全栈 项目(电子词典、协程、pdb调试)

    后面我就不截图了 大家还是看原文吧                          https://yq.aliyun.com/articles/629534 . ................. ...

  4. servlet和Jsp的复习整理

    servlet 1.生命周期 a.构造方法.生成一个servlet b.init()方法.当开启服务器时,servlet第一次被装载,servlet引擎调用这个servlet的init()的方法,只调 ...

  5. markdown语法介绍

    1. 标题类 每级标题用"# title"表示,共支持6级标题: 2. 段落类 1.建议用换行符控制: 2.用"<p></p>"控制: ...

  6. mapReduce入门教程

    什么是MapReduce MapReduce是Google提出的一个软件架构,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归纳)&q ...

  7. dotnetframe的清理工具

    微软的产品一向不敢恭维,卸载都没有办法卸载干净,卸载又慢又不彻底,dotnet被我卸载之后还有注册表残留以至于无法重新安装. .NET Framework Cleanup Tool真的很好用,全部版本 ...

  8. *转载 Tarjan有向图详解

    注意! 文章转自:https://www.cnblogs.com/liwenchi/p/7259306.html,如有造成任何侵权行为,请与我联系.我会在第一时间删除. 不过说实话,这大佬写的真的强, ...

  9. oracle数据库分页原理

    Oracle数据库的rownum 在Oracle数据库中,分页方式没有MySql这样简单,它需要依靠rownum来实现.Rownum表示一条记录的行号,值得注意的是它在获取每一行后才赋予.因此,想指定 ...

  10. redis集群sentinel哨兵模式的搭建与实际应用

    参考资料:https://blog.csdn.net/men_wen/article/details/72724406 之前环境使用的keepalived+redis vip集群模式,现在我们服务切换 ...