传送门

Description

  你是一个hacker,侵入了一个有着n台计算机(编号为1.2.3....n)的网络。一共有n种服务,每台计算机都运行着所有服务。对于每台计算机,你都可以选择一项服务,终止这台计算机和所有与它相邻计算机的该项服务(如果其中一些服务已经停止,那他们继续保持停止状态)。你的目标是让尽量多的服务完全瘫痪

Input

输入包含多组数据,每组数据中:

  • 第一行为整数n:
  • 以下n行每行描述一台计算机相邻的计算机,
  • 其中第一个数m为相邻计算机个数,接下来的m个整数为这些计算机的编号。

输入结束标志n=0

Output

对于每组数据:

  • 输出完全瘫痪的服务的数量

格式见样例

Sample Input


Sample Output

Case :
Case :

Hint

1<=n<=16

Solution

  考虑对于每种服务,显然需要所有计算机都停掉才有价值。

  我们设Seti为i和i相邻的计算机编号的集合。由于数据范围小,显然所有的集合都可以二进制表示,以下不再赘述。

  那么本题所求就变为将所有的Set最多分为几组,使得每组的Set的并集都为全集。

  我们设fi为只考虑集合i中元素的ans。

  转移显然:

  f[i]=max{f[i^j]|集合j的set并集为全集且j是i的子集}+1

  考虑阶段:

  最简单的方法当然是按照元素个数枚举,但是在本题中难以操作。

  考虑以下事实 :

  设i从j转移过来,那么j为i的子集。在二进制表示下,显然有j≤i。那么按照i升序枚举,显然j在计算i时已经被计算完毕。

  现在考虑如何高效率枚举i的子集:

  朴素的枚举方式如下:

int ziji=;
for(int i=;i<n;++i)
if((<<i)&s) ziji|=(<<i)

  考虑优化效率:

for(rg int i=;i<=upceil;++i) {
for(rg int j=i;j;j=(j-)&i) {
dosth();
}
}

  内层循环可以高效枚举i的子集,其时间效率为O(|i|),其中|i|代表i在二进制意义下表示的集合的元素个数.

  继续考虑优化:

  在枚举子集后,如果可以快速判断该集合中元素对应的set的并集是否为全集可以大大提高时间效率,这样我们令S0[i]为i在二进制意义下所代表的集合的元素对应的set的并集的二进制(这是什么鬼畜句型。我们可以通过预处理做到O(1)查询并集。

  预处理时,枚举每个集合,暴力枚举每个元素j是否属于该集合,如果是,则S0[i]|=Set[j]。时间复杂度O(n*2n)。

  这样思路就完成了:

  预处理出计算机i的子集Set,通过枚举选择的计算机编号,进行DP转移。

  事实上,这是一个状压套状压的题目。我们枚举的是计算机的编号,而判断的是编号所对应的Set的集合的并集是否等于全集。

  考虑时间复杂度:

  参照循环,时间复杂度为全集的子集的子集个数和。

  由于元素个数为x的元素子集有C(n,x)个,每个子集有2x个子集,所以元素个数为Σ(x:1 to n)C(n,x)*2x。由二项式定理得,原式=(2+1)n=3n

  所以程序得时间复杂度为θ(3n+n*2n)=O(3n)

Code

#include<cstdio>
#include<cstring>
#define rg register
#define ci const int inline void qr(int &x) {
char ch=getchar(),lst=NULL;
while(ch>''||ch<'') lst=ch,ch=getchar();
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
if (lst=='-') x=-x;
} char buf[];
inline void write(int x,const char aft,const bool pt) {
if(x<) {putchar('-');x=-x;}
int top=;
do {
buf[++top]=x%+'';
x/=;
} while(x);
while(top) putchar(buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T &a,const T &b) {if(a>b) return a;return b;}
template <typename T>
inline T mmin(const T &a,const T &b) {if(a<b) return a;return b;}
template <typename T>
inline T mabs(const T &a) {if(a<) return -a;return a;} template <typename T>
inline void mswap(T &a,T &b) {T temp=a;a=b;b=temp;} const int maxn = ;
const int maxt = ;
const int maxm = ; int n,a,b,cnt,ans; int frog[maxt];
int Set[maxn];
int s0[maxt]; void clear(); int main() {
qr(n);
while(n) {
clear();
for(rg int i=;i<n;++i) {
a=;qr(a);
while(a--) {
b=;qr(b);
Set[i]|=(<<b);
}
Set[i]|=(<<i);
}
rg const int upceil=(<<n)-;
for(rg int i=;i<=upceil;++i) {
for(rg int j=;j<n;++j) {
int k=<<j;
if(k>i) break;
if(i&k) s0[i]|=Set[j];
}
}
for(rg int i=;i<=upceil;++i) {
for(rg int j=i;j;j=(j-)&i) {
if(s0[j]==upceil) {frog[i]=mmax(frog[i],frog[j^i]+);}
}
ans=mmax(frog[i],ans);
}
printf("Case %d: %d\n",++cnt,ans);
n=;qr(n);
}
return ;
} void clear() {
memset(s0,,sizeof s0);
memset(Set,,sizeof Set);
memset(frog,,sizeof frog);
ans=;
}

Summary

1、子集枚举方式需要牢记。

2、在一些由子集转移来得题目中,可以将集合序号作为阶段。

3、计算复杂的得时候二项式定理会被经常使用

4、在高复杂度问题中,预处理是个好东西。

【状压DP】【UVA11825】 Hackers' Crackdown的更多相关文章

  1. UVa 11825 (状压DP) Hackers' Crackdown

    这是我做状压DP的第一道题,状压里面都是用位运算来完成的,只要耐下心来弄明白每次位运算的含义,还是容易理解的. 题意: 有编号为0~n-1的n台服务器,每台都运行着n中服务,每台服务器还和若干台其他服 ...

  2. UVa 11825 Hackers' Crackdown (状压DP)

    题意:给定 n 个计算机的一个关系图,你可以停止每台计算机的一项服务,并且和该计算机相邻的计算机也会终止,问你最多能终止多少服务. 析:这个题意思就是说把 n 台计算机尽可能多的分成一些组,使得每组的 ...

  3. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  4. nefu1109 游戏争霸赛(状压dp)

    题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...

  5. poj3311 TSP经典状压dp(Traveling Saleman Problem)

    题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...

  6. [NOIP2016]愤怒的小鸟 D2 T3 状压DP

    [NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...

  7. 【BZOJ2073】[POI2004]PRZ 状压DP

    [BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...

  8. bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)

    数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...

  9. HDU 1074 Doing Homework (状压dp)

    题意:给你N(<=15)个作业,每个作业有最晚提交时间与需要做的时间,每次只能做一个作业,每个作业超出最晚提交时间一天扣一分 求出扣的最小分数,并输出做作业的顺序.如果有多个最小分数一样的话,则 ...

  10. 【BZOJ1688】[Usaco2005 Open]Disease Manangement 疾病管理 状压DP

    [BZOJ1688][Usaco2005 Open]Disease Manangement 疾病管理 Description Alas! A set of D (1 <= D <= 15) ...

随机推荐

  1. <cfloat> (float.h)

    头文件: <cfloat> (float.h) 浮点类型的特性 这个头文件为特殊系统和编译器的实现描述了浮点类型的特征. 一个浮点数包含四个元素: 一个标志(a sign):正或负; 一个 ...

  2. ADO.NET基础学习-----四种模型,防止SQL注入

    1.ExcuteNonQuery 执行非查询语句,返回受影响的行数. // 1.ExcuteNonQuery string sqlconn = "Data Source=wss;Initia ...

  3. 【WXS】变量定义保留标识符

    以下字符不能作为变量名称定义: delete void typeof null undefined NaN Infinity var if else true false require this f ...

  4. ntp服务:实现时间同步

    一. 引言 目前的项目为分布式系统,采用dubbo+zookeepe,排查BUG,发现各个服务器的时间不一致,遂网上查找资源,使得时间保持一致. 二. 步骤 1)以第一台服务器为“服务端”,其他台服务 ...

  5. [Clr via C#读书笔记]Cp18 定制Attribute

    Cp18 定制Attribute 意义 利用Attribute,可以声明性的给自己的代码结构创建注解,从而实现一些特殊的功能:最终在元数据中生成,这种可扩展的元数据信息可以在运行时的时候查询,从而动态 ...

  6. 改maven下创建的动态网站依赖的jre版本

    问题描述 通过maven创建一个动态网站后,eclipse会提示一个提醒 Build path specifies execution environment J2SE-1.5. There are ...

  7. error:no module named StringIO or cStringIO

    一般遇到没有某个模块问题的时候,通常的解决方法是pip相应的模块: 不过,鉴于Python2和python3的不同(让人头疼) 解决方法:在python3中,该模块被新的模块取代,即io. 重新imp ...

  8. 5.azkaban权限管理

    权限简介 user 登录azkaban的用户 注意,如果不给用户roles groups,则用户就是普通用户,只能创建\查看\执行\调度自己的任务,不能看别人的 group group:用户的集合,给 ...

  9. 动态内存&对象

    一.对象的生存期 对于 static 对象和自动对象,它们都有着严格定义的生存期. 全局对象:在程序启动时分配,在程序结束时销毁. 局部自动对象:在对象定义语句时分配,在离开块时销毁 局部 stati ...

  10. Special Offer! Super Price 999 Bourles!

    Description Polycarpus is an amateur businessman. Recently he was surprised to find out that the mar ...