接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿

  

  如上图。(刚画错了一发。。。已更新

  然后就可以过V2了

  orz CZL卡常大师,我怎么越卡越慢啊QAQ

#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define ll long long
using namespace std;
const int maxn=,mod=1e9+;
int n,m,k;
int sum[maxn],v[maxn],g[],f[][maxn];
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int MOD(int x){return x>=mod?x-mod:x;}
int main()
{
read(n);read(m);k=(int)floor(log(n)/log()+);
for(int i=;i<=n;i++)f[][i]=,sum[i]=sum[i-]+;
v[]=;g[]=n-((n>>)+)+;
for(int i=;i<=k;i++)
{
for(int j=<<(i-);j<=n;j++)f[i][j]=sum[j>>];
for(int j=(n>>)+;j<=n;j++)g[i]=MOD(g[i]+f[i][j]);
sum[(<<(i-))-]=;for(int j=<<(i-);j<=n;j++)sum[j]=MOD(sum[j-]+f[i][j]);
}
for(int i=;i<=m;i++)
{
for(int j=;j<=min(i,k);j++)
v[i]=MOD(v[i]+(1ll*g[j]*v[i-j]%mod));
}
printf("%d\n",v[m]);
return ;
}

51nod 1197 字符串的数量 V2(矩阵快速幂+数论?)的更多相关文章

  1. [CQOI2018]交错序列 (矩阵快速幂,数论)

    [CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...

  2. HDU6395 Sequence(矩阵快速幂+数论分块)

    题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...

  3. 51nod 算法马拉松18 B 非010串 矩阵快速幂

    非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...

  4. 51nod 1113 矩阵快速幂

    题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...

  5. 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)

    [BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...

  6. 51nod 1126 矩阵快速幂 水

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  7. luogu3263/bzoj4002 有意义的字符串 (数学+矩阵快速幂)

    首先我们发现$\frac{b+\sqrt{d}}{2}$这个形式好像一元二次方程的求根公式啊(???反正我发现不了) 然后我们又想到虽然这个东西不好求但是$(\frac{b-\sqrt{d}}{2}) ...

  8. BZOJ.4180.字符串计数(后缀自动机 二分 矩阵快速幂/倍增Floyd)

    题目链接 先考虑 假设S确定,使构造S操作次数最小的方案应是:对T建SAM,S在SAM上匹配,如果有S的转移就转移,否则操作数++,回到根节点继续匹配S.即每次操作一定是一次极大匹配. 简单证明:假设 ...

  9. $bzoj1009-HNOI2008$ $GT$考试 字符串$dp$ 矩阵快速幂

    题面描述 阿申准备报名参加\(GT\)考试,准考证号为\(N\)位数\(x_1,x_2,...,x_n\ (0\leq x_i\leq 9)\),他不希望准考证号上出现不吉利的数字. 他的不吉利数字\ ...

随机推荐

  1. 「日常训练」Uncle Tom's Inherited Land*(HDU-1507)

    题意与分析 题意是这样的:给你一个\(N\times M\)的图,其中有一些点不能放置\(1\times 2\)大小的矩形,矩形可以横着放可以竖着放,问剩下的格子中,最多能够放多少个矩形. 注意到是\ ...

  2. Python 函数参数类型大全(非常全!!!)

    Python 函数参数类型大全(非常全!!!) 1.在python编写程序里面具有函数文档,它的主要作用是为了让别人可以更好的理解你的函数,所以这是一个好习惯,访问函数文档的方式是: MyFuncti ...

  3. Maxscript-获取选中文件

    Maxscript - 获取选中文件 使用 .Net 的方法弹出窗口选择文件,并范围所有选中文件的路径“” Fn Fun_GetFilePaths strTitle strFilter = ( dia ...

  4. Spring Cloud(六):Hystrix 监控数据聚合 Turbine【Finchley 版】

    Spring Cloud(六):Hystrix 监控数据聚合 Turbine[Finchley 版]  发表于 2018-04-17 |  更新于 2018-05-07 |  上一篇我们介绍了使用 H ...

  5. String和StringBuffer以及StringBuilder的区别

    今天在读<java编程思想>的时间,在看到String和StringBuffer以及StringBuffer这三个类的时间,做一个随笔小结,为自己的面试做好准备! 一:String,Str ...

  6. kubernetes相关

    1.获取client , api-server 加token 或in-cluster方式 2.所有对象均有list update get 等方法 3.对象属性源码追踪,yaml与源码一一对应 4.一些 ...

  7. Windows10系统tensorflow-gpu安装

    准备工作 安装前请确保自己的显卡支持gpu加速,支持加速的gpu型号可在下面的链接中查询. https://www.geforce.com/hardware/technology/cuda/suppo ...

  8. MR execution in YARN

    Overview YARN provides API not for application developers but for the great developers working on ne ...

  9. Python中__name__属性的妙用

    在Python中,每一个module文件都有一个built-in属性:__name__,这个__name__有如下特点: 1 如果这个module文件是被别的文件导入的,那么,该__name__属性的 ...

  10. mysql 只返回一条数据

    问题描述: 需要得到时间最近的一条记录,但是按照时间字段排完序之后,得到的是全部. 解决办法: order by createtime desc //降序:asc:升序 LIMIT 1