字符串匹配有KMP,BM,SUNDAY算法。

可见(https://leetcode-cn.com/problems/implement-strstr/solution/c5chong-jie-fa-ku-han-shu-bfkmpbmsunday-by-2227/

https://www.cnblogs.com/ZuoAndFutureGirl/p/9028287.html

KMP核心就是next数组(pattern接下来向后移动的位数) (text 当前匹配到的index不变)

模式串向右移动的位数为:失配字符所在位置 - 失配字符对应的next 值

即移动的实际位数为:j - next[j],且此值大于等于1。

操作为

if(text[i]!=p[j])

j=next[j];  //  next[j] 即为p[0,j-1]串中最长前后缀长度.   p[j]与text[i]失配,但text[X,i-1]与p[0,j-1]匹配,其中最长前后缀也匹配,直接移动pattern,前缀覆盖后缀,比较下一位p[k]与text[i]是否匹配

//p[next[j]] 即为最长前后缀后面一位p[k]

//k为 next[j]. 即p[0,j-1]串最长前后缀的长度

next求法:

next[0]=-1  //若text[i]与pattern第一个字符失配,直接向后移动pattern一位

k =next [j]  // j-1串中,最长的前后缀长度为k

if p[j]==p[k] //j串中最长前后缀长度为k+1

next[j + 1] = next[j] + 1

else

k=next[k]  //画个图就很好想.

void GetNext(char* p,int next[])
{
int pLen = strlen(p);
next[0] = -1;
int k = -1;
int j = 0;
while (j < pLen - 1)
{
//p[k]表示前缀,p[j]表示后缀
if (k == -1 || p[j] == p[k])
{
++k;
++j;
next[j] = k;
}
else
{
k = next[k];
}
}
}

next优化:

问题出在不该出现p[j] = p[ next[j] ]。

理由是:当p[j] != text[i] 时,下次匹配必然是p[ next [j]] 跟text[i]匹配,如果p[j] = p[ next[j] ],必然导致后一步匹配失败

(因为p[j]已经跟s[i]失配,然后你还用跟p[j]等同的值p[next[j]]去跟s[i]匹配,很显然,必然失配),

所以不能允许p[j] = p[ next[j ]]。如果出现了p[j] = p[ next[j] ],则需要再次递归,即令next[j] = next[ next[j] ]。

所以,咱们得修改下求next 数组的代码。

//优化过后的next 数组求法
void GetNextval(char* p, int next[])
{
int pLen = strlen(p);
next[0] = -1;
int k = -1;
int j = 0;
while (j < pLen - 1)
{
//p[k]表示前缀,p[j]表示后缀
if (k == -1 || p[j] == p[k])
{
++j;
++k;
//较之前next数组求法,改动在下面4行
if (p[j] != p[k])
next[j] = k; //之前只有这一行
else
//因为不能出现p[j] = p[ next[j ]],所以当出现时需要继续递归,k = next[k] = next[next[k]]
next[j] = next[k];
}
else
{
k = next[k];
}
}
}

因为比较熟悉KMP,就用KMP了

class Solution {
public:
vector<int> getnext(string str)
{
int len=str.size();
vector<int> next;
next.push_back(-1);//next数组初值为-1
int j=0,k=-1;
while(j<len-1)
{
if(k==-1||str[j]==str[k])//str[j]后缀 str[k]前缀
{
j++;
k++;
if(str[j]!=str[k])
next.push_back(k);
else
next.push_back(next[k]);
}
else
{
k=next[k];
}
}
return next;
} int strStr(string haystack, string needle) {
if(needle.empty())
return 0; int i=0;
int j=0;
int len1=haystack.size();
int len2=needle.size();
vector<int> next;
next=getnext(needle);
while((i<len1)&&(j<len2))
{
if((j==-1)||(haystack[i]==needle[j]))
{
i++;
j++;
}
else
{
j=next[j];//获取下一次匹配的位置
}
}
if(j==len2)
return i-j; return -1;
} };

然后看题解,有SunDay算法,更好理解(https://leetcode-cn.com/problems/implement-strstr/solution/python3-sundayjie-fa-9996-by-tes/

偏移表告诉我们下一步可能匹配需要移动的最小步数

设text,patternlen=len

核心思想就是当前匹配若失败,那么当前text中开始匹配的位置i+len-1必不可能匹配上。此时检查i+len处的字符,当其等于pattern中的某个字符(从右向左找),则将pattern移动使text[i+len]与pattern中相应字符对应。

然后重复。

若没有匹配上,那么直接移动len+1

最坏情况:O(nm)
平均情况:O(n)

(实际提交的 时候,确实sunday比kmp快一点。可能是测试用例的关系)

class Solution {
public:
int strStr(string haystack, string needle) {
if(needle.empty())
return 0;
int slen=haystack.size();
int tlen=needle.size();
if(slen<tlen)
return -1;
int i=0,j=0;//i指向源串首位 j指向子串首位
int k;
int m=tlen;//第一次匹配时 源串中参与匹配的元素的下一位 while(i<slen)
{
if(haystack[i]!=needle[j])
{
for(k=tlen-1;k>=0;k--)//遍历查找此时pattern与源串[i+tlen+1]相等的最右位置
{
if(needle[k]==haystack[m])
break;
}
i=m-k;//i为下一次匹配源串开始首位 Sunday算法核心:最大限度跳过相同元素
j=0;//j依然为子串首位
m=i+tlen;//m为下一次参与匹配的源串最后一位元素的下一位
if(m>slen)
return -1;
}
else
{
if(j==tlen-1)//若j为子串末位 匹配成功 返回源串此时匹配首位
return i-j;
i++;
j++;
}
}
return -1;//当超过源串长度时
}
};

还有bm算法 O(N) - O(M+N)

class Solution {
public:
void get_bmB(string& T,vector<int>& bmB)//坏字符
{
int tlen=T.size();
for(int i=0;i<256;i++)//不匹配直接移动子串
{
bmB.push_back(tlen);
}
for(int i=0;i<tlen-1;i++)//靠右原则
{
bmB[T[i]]=tlen-i-1;
}
} void get_suff(string& T,vector<int>& suff)
{
int tlen=T.size();
int k;
for(int i=tlen-2;i>=0;i--)
{
k=i;
while(k>=0&&T[k]==T[tlen-1-i+k])
k--;
suff[i]=i-k;
}
} void get_bmG(string& T,vector<int>& bmG)//好后缀
{
int i,j;
int tlen=T.size();
vector<int> suff(tlen+1,0);
get_suff(T,suff);//suff存储子串的最长匹配长度
//初始化 当没有好后缀也没有公共前缀时
for(i=0;i<tlen;i++)
bmG[i]=tlen;
//没有好后缀 有公共前缀 调用suff 但是要右移一位 类似KMP里的next数组
for(i=tlen-1;i>=0;i--)
if(suff[i]==i+1)
for(j=0;j<tlen-1;j++)
if(bmG[j]==tlen)//保证每个位置不会重复修改
bmG[j]=tlen-1-i;
//有好后缀 有公共前缀
for(i=0;i<tlen-1;i++)
bmG[tlen-1-suff[i]]=tlen-1-i;//移动距离
} int strStr(string haystack, string needle) { int i=0;
int j=0;
int tlen=needle.size();
int slen=haystack.size(); vector<int> bmG(tlen,0);
vector<int> bmB;
get_bmB(needle,bmB);
get_bmG(needle,bmG); while(i<=slen-tlen)
{
for(j=tlen-1;j>-1&&haystack[i+j]==needle[j];j--);
if(j==(-1))
return i;
i+=max(bmG[j],bmB[haystack[i+j]]-(tlen-1-j));
}
return -1;
}
}; 作者:2227
链接:https://leetcode-cn.com/problems/implement-strstr/solution/c5chong-jie-fa-ku-han-shu-bfkmpbmsunday-by-2227/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

leetcode28 strstr kmp bm sunday的更多相关文章

  1. 字符串匹配 扩展KMP BM&Sunday

    复杂度都是O(n) 扩展1:BM算法 KMP的匹配是从模式串的开头开始匹配的,而1977年,德克萨斯大学的Robert S. Boyer教授和J Strother Moore教授发明了一种新的字符串匹 ...

  2. 第3章:LeetCode--算法:strStr KMP算法

    https://leetcode.com/problems/implement-strstr/  28. Implement strStr() 暴力算法: int ViolentMatch(char* ...

  3. 字符串匹配算法——BF、KMP、Sunday

    一:Brute force 从源串的第一个字符开始扫描,逐一与模式串的对应字符进行匹配,若该组字符匹配,则检测下一组字符,如遇失配,则退回到源串的第二个字符,重复上述步骤,直到整个模式串在源串中找到匹 ...

  4. BF + KMP + BM 字符串搜索算法

    BF #include <stdio.h> #include <string.h> int simplicity(char *s, char *t, int pos); int ...

  5. 28.Implement strStr()---kmp

    题目链接:https://leetcode.com/problems/implement-strstr/description/ 题目大意:字符串匹配,从字符串中,找到给定字符串第一次出现的位置下标, ...

  6. LeetCode-Implement strStr()-KMP

    Implement strStr(). Returns the index of the first occurrence of needle in haystack, or -1 if needle ...

  7. 28. Implement strStr()(KMP字符串匹配算法)

    Implement strStr(). Return the index of the first occurrence of needle in haystack, or -1 if needle ...

  8. 阮一峰 KMP BM算法

    存一个链接,讲得好啊! 点击这里打开     字符串KMP 点击这里打开     字符串匹配的Boyer-Moore算法

  9. 动画演示Sunday字符串匹配算法——比KMP算法快七倍!极易理解!

    前言 上一篇我用动画的方式向大家详细说明了KMP算法(没看过的同学可以回去看看). 这次我依旧采用动画的方式向大家介绍另一个你用一次就会爱上的字符串匹配算法:Sunday算法,希望能收获你的点赞关注收 ...

随机推荐

  1. service自动发现,yaml文件管理内外部端口访问

    service服务发现 [root@k8s-master ~]# vim busybox-5d4f595646-dzjv4.yaml apiVersion: v1 kind: Pod metadata ...

  2. Kubernetes 升级过程记录:从 1.17.0 升级至最新版 1.20.2

    本文记录的是将 kubernetes 集群从 1.17.0 升级至最新版 1.20.2 的实际操作步骤,由于 1.17.0 无法直接升级到 1.20.2,需要进行2次过滤升级,1.17.0 -> ...

  3. Java编程开发之浅析Java引用机制

    对于一个Java的对象而言,存储主要分为两种,一种是内存堆(Heap),内存堆是无序的,主要用来存放创建的Java对象:一种是内存栈(Stack),主要用来存放Java引用,然后在管理过程使用Java ...

  4. 2V升3V芯片,输入2V输出3V可达1A

    PW5328B是一个恒定频率, 6引脚 SOT23电流模式升压转换器,用于小型低功耗应用. PW5328B的开关频率为 1.2MHz,允许使用微小的.低成本的电容器和电感器.内部软启动导致小涌流和延长 ...

  5. Flask的“中间件”

    特殊装饰器 from flask import Flask,render_template,request app = Flask(__name__) @app.before_request def ...

  6. pytest:通过scope控制fixture的作用范围

    一.fixture里面有个参数scope,通过scope可以控制fixture的作用范围,根据作用范围大小划分:session>module>class>function,具体作用范 ...

  7. ubuntu14.04 LEMP(linux+nginx+mysql+php5)构建环境

    Install LEMP (Linux, Nginx, MySQL and PHP) Stack on Ubuntu Linux 14.04 LTS by VIVEK GITE on DECEMBER ...

  8. Uber如何解决2000多个微服务带来的复杂性问题?

    Uber如何解决2000多个微服务带来的复杂性问题? Adam Gluck 架构头条 2020-10-29 https://mp.weixin.qq.com/s/N7fVDZVm8uC9wVvd9DQ ...

  9. 实现一个List集合中的某个元素的求和

    List<User> userlist = userService.findAll();Integer sum= userlist .stream().collect(Collectors ...

  10. 从tcp层面研究java socket 的使用

    本文主要通过wireshark抓包来分析java socket程序的一些细节, 解决以前的一些疑问: 1.当一方的socket先关闭后,另一方尚未关闭的socket 还能做什么? 2.当基于socke ...